Vidispine REST APl Documentation

Release 5.x

Vidispine AB

May 24, 2022

CONTENTS

1 Introduction and data model 3
2 Items and Metadata 13
3 Collections and Libraries 93
4 Shapes, Components and Transcoding 103
5 Storages and Files 139
6 Jobs and Task Definitions 167
7 Notifications 181
8 Resources 185
9 Timelines and sequences 219
10 Users, Groups, and Access control 235
11 Multi-site 253
12 Miscellaneous Topics 255
13 Monitoring 261
14 Configuration and Integration 269
15 Troubleshooting and obtaining information 335
16 Installation 339
17 API Reference 353
18 Release Notes 929
HTTP Routing Table 1075

Index 1085

Vidispine REST API Documentation, Release 5.x

The Vidispine REST API is a rich interface for creating custom media management solutions for the most complex
requirements.

This documentation is available as PDF here. The documentation comes with its own searching functionality, in the
upper left corner.

This reference documentation is divided into the following sections. Each section starts with an overview and is then
followed by introductory guides. The API reference section at the end explains the API and resources in detail.

CONTENTS 1

Vidispine REST APl Documentation, Release 5.x

2 CONTENTS

CHAPTER
ONE

INTRODUCTION AND DATA MODEL

1.1 Entities in Vidispine

Before start playing with the API, a short introduction to the data model might be valuable. The figure Overview of
the entities in Vidispine shows some of the entities that builds the assets in Vidispine.

4 L _— ch - } ——
Y ollection
abstract Item

entity \ 1
/ \Collection /
4 ltem)
Shape Shape
‘ j ‘ ’ E ‘ Metadata
Component Component Component
- ll 7
entity ! Storage Storage
Fig. 1.1: Overview of the entities in Vidispine
1.1.1 Iltem
The item 1is the central piece in the data model. This corresponds to an asset in other
systems. The item is an abstraction of the physical content (essence) and holds informa-
tion about the content (metadata). For information about how to create items, see Imports.

Vidispine REST APl Documentation, Release 5.x

Collection
Other entities, further down in the hierarchy, may also hold meta- :IJ
data. The item has the richest functions for how metadata can be
stored, searched, and indexed. For information about metadata =~ item
on an item, see /tem metadata. ,ﬁ ® -
The item also holds information about which users that are al- Lorem psum 5 Lt
lowed to read and modify information (access control). For in- = G

formation about access control, see Access control for items, li-

braries, collections. /\
1.1.2 Shape

A shape is a physical rendition of an item.

 For a video, it can be a low-resolution editing version, a
web version, ...

* For a document, it can the the pages as images, extracted
text, ...

* Etc.
For information about shapes, see Item shapes.

A shape can have one or several shape tags. The shape tags are used when
Vidispine selects which files that are being transcoder, exported, thumb-
nailed, etc. A special shape tag is original, a shape tag that the im-
ported source file gets. The shape tag also contains the recipe for how to
create new shapes using the transcoder. For information about shape tags,
see Shape tags and presets.

1.1.3 Component

Each shape has one or more components. A media shape might for example
contain:

* A container component

* Video components

¢ Audio components
Each component corresponds to one file content. There may be several Component W

copies of the file however.

The component contains information (technical metadata) about codes, res-
olution, frame rate and more. For information about components, see /fem
shapes.

1.1.4 File and storage

The file entity represents a physical file on a file system. The file is stored
on a storage. Vidispine manages all files, and knows which copies of a file
that have been made, and how they relate.

For information about files and storages, see Storages.

Shape

4 Chapter 1. Introductioh and data model

Vidispine REST API Documentation, Release 5.x

1.1.5 Library

A library is a list of items. A library can be created manually, by adding
the items to a library, or dynamically, by adding search results to a library.
Libraries are useful when performing batch operations. Libraries can also
be used when creating rules.

For information about libraries, see Libraries.

1.1.6 Collection

A collection is a list of items, libraries, and/or collections. Collections may
have metadata and access rights, which are applied to the items that be-
long to the collection. While the library is typically created from a search
operation, the collection is often used like a file system folder, to organize
items.

For information about collections, see Collections.

1.2 RESTful API

The Vidispine API is a REST API
(http://en.wikipedia.org/wiki/Representational_State_Transfer), using
HTTP as a transfer protocol.

1.2.1 Some basics in the RESTful API
URI

The URI is used as a resource (noun). This means each entity in Vidispine
has its own (base) URI. Example:

e /API/item - All items
e /API/item/VX-204 - A particular item
e /API/item/VX-204/shape - All shapes for a particular item

* /API/item/VX-204/shape/VX-576 - A particular shape for a particular item

Method

The HTTP method is used as a verb. The verb is used to specify whether to Create (POST), Read (GET), Update (PUT)
or Delete (DELETE) an entity. This is called CRUD (http://en.wikipedia.org/wiki/Create,_read,_update_and_delete).

GET

* Get list of items/jobs or storage definition etc.

* Does not change anything to the database.
POST

* Start jobs, create new collection, etc.

» Will create one or more new entities in the database.
PUT

» Update existing entity, create new entity with supplied id.

* Identical sequential requests will not create new entities.

1.2. RESTful API 5

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Vidispine REST APl Documentation, Release 5.x

DELETE
* Delete items, abort jobs, etc.

* Identical sequential requests will not change anything (fails gracefully on subsequent requests).

Media type

Media types are important. To specify which media type the request has, HTTP header Content—-type is used. To
specify which media type the caller accepts as response, HTTP header Accept is used. Most methods in Vidispine
read XML (application/xml)or JSON (application/json)and write XML or JSON. Some methods reads
and/or writes text (text /plain), though.

Parameters

Parameters are given as query parameters or header parameters.

Query parameters

Given at the end of the URI. The query parameters follows after a question mark (?), and each query parameter
key/value pair is delimited by an ampersand (&). An equal sign = is used to separate key and value. Keys and values
have to be URL encoded.

Header parameters

Header parameters are given in addition to the URI. The Content-type and Accept headers have already been
mentioned. Other header worth mentioning is the RunAs header used for authentication (Run-As option), and the
index and size header, used at import (Import using the request body).

1.3 Common elements in the API

1.3.1 Identifiers

Most entities in Vidispine are identified by a Site ID. A Site ID is a string of the form: { site } — { serial } (example:
ATL-3033). Note that a Site ID is not unique within the system, there could be both an item and a job with the Site
ID vX-195, thus Site IDs are only unique within the entity type.

See also External identifiers.

Note:

* site is by the following regular expression form: [_A-Za-z] [_A-Za-z0-9] . The default site name is VX.
This can be overridden with the Java system property com. vidispine.site.

* serial is of the following regular expression form: [1-9] [0-9]

¢ site is maximum 10 characters, and case sensitive

Long identifiers

In order to avoid confusion with non unique identifiers, it is possible to have Site IDs displayed as ITEM-VX-1,
JOB-VX-1, STORAGE-VX-3, etc. To do this, add the Java system property vidispine.identifier.format
with the value full. After this is done, a re-index of items and collections should be started. Now identifiers presented
in the system will be of the form described above.

6 Chapter 1. Introduction and data model

Vidispine REST API Documentation, Release 5.x

1.3.2 Boolean operators

XML elements to handle boolean expressions:

or

<or>
<matching-expression />

</or>

and

<and>
<matching-expression />

</and>

not

<not>
<matching-expression />
</not>

1.3.3 Text/plain formatting
CRLF

CRLF is used in text/plain representation when several values are returned, such as tuples or lists. CRLF is
represented by the two bytes 0d Oa in hexadecimal notation.

Tabbed tuples

Tabbed tuples are used in text/plain representation when several values are returned, such as tuples or lists.
Tabbed tuples delimits each value by the tab character, 09 in hexadecimal notation. Together with CR LF it is used to
create lists of tuples. Users should ignore any output after the last defined element in the tuple, more elements may be
returned in future versions of the APL

1.4 Time representation

This section describes how time is handled in the system. There are five main categories related to time which will be
discussed here: time bases, time positions (a.k.a. time codes), time intervals, time durations and time span.

1.4.1 Time bases

A time base describes how long one unit of time is in seconds using a ratio. This means that everything that has to do
with time is done using rational numbers. For instance, ten seconds in the time base used by PAL (1/25) would be 250
units, or 250/25.

Textual representations

When working with time bases it is sometimes necessary to construct textual representations which are human readable
and can be more easily output and entered into the system. To that end the following textual representations are valid
for time bases:

1.4. Time representation 7

Vidispine REST APl Documentation, Release 5.x

1. Its inverse as a rational number. The syntax is { denominator }[:{ numerator }], where numerator can be
omitted if it’s value is one.

2. A TimeBaseConstant string

TimeBaseConstant

The following time base constants are currently defined:

PAL 1725
NTSC 1001/30000
NTSC30 | 1/30

Examples
1. 25, 30000:1001, 48000
2. PAL, NTSC

XSL

TimeBaseType is the XML representation of a time base.

<xs:complexType name="TimeBaseType">
<Xs:sequence>
<xs:element name="numerator" type="xs:int"/>
<xs:element name="denominator" type="xs:int"/>
</xs:sequence>
</xs:complexType>

Examples

<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>

1.4.2 Time codes

A time code is a representation of a point in time in some time base.

Textual representations

When working with time codes it is sometimes necessary to construct textual representations with are human readable
and can be more easily output and entered into the system. To that end the following textual representations are valid
for time codes:

1. A sample count and a time base. The syntax is { number of samples }[@ { textual representation of time base
}], where the time base is optional and implicitly one second if omitted. Examples: 124, 124222Q@44100,
400@30000:1001, 400@NTSC.

2. A decimal number. Example: 124 .25 (will be treated as 12425/100 or 497/4). This is strongly not
recommended, as most sampling frequencies do not have a finite decimal representation!

3. A decimal number and a time base. Example: 124 .25/PAL (will be treated as 12425/2500). This is also
not recommended!

8 Chapter 1. Introduction and data model

Vidispine REST API Documentation, Release 5.x

4. The special constants -INF and +INF, representing the earlier than the earliest possible instant and later than the

latest possible instant, respectively.

XSL

TimeCodeType is the XML representation of a time code.

<xs:complexType name="TimeCodeType">
<xs:sequence>

<xs:element name="samples" type="xs:long"/>
<xs:element name="timeBase" type="tns:TimeBaseType"/>

</xs:sequence>
</xs:complexType>

Examples

<timeCode>
<samples>250</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</timeCode>

1.4.3 Time intervals

A time interval consists of two time codes: start and end. The time between them denotes the period of time which is
of interest. Note that start and end specify an interval like [start,end) in mathematical notation. In other words, the end

time code is not within the interval.

Specifying an interval where both time codes have different time bases is valid.

XSL

<xs:complexType name="TimeIntervalType">
<xs:sequence>

<xs:element name="start" type="tns:TimeCodeType"/>

<xs:element name="end"
</xs:sequence>
</xs:complexType>

type="tns:TimeCodeType"/>

Examples
Interval in PAL

<!-- Seconds 10-20 in PAL -->
<interval>
<start>
<samples>250</samples>
<timeBase>

<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</start>
<end>
<samples>500</samples>

1.4. Time representation

Vidispine REST APl Documentation, Release 5.x

<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</end>
</interval>

Mixed time bases

<!-- Approximately seconds 10-20. Start in PALs time base, end in NTSCs time base_,
— (for instance cutting from PAL to NTSC video) —-->
<interval>
<start>
<samples>250</samples>
<timeBase>

<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</start>
<end>
<samples>599</samples>
<timeBase>
<numerator>1001</numerator>
<denominator>30000</denominator>
</timeBase>
</end>
</interval>

1.4.4 Time durations

A time duration is the length of a time interval. It can be calculated by subtracting the end time code from the start
time code. This means it’s simply another time code, with its time line’s zero at the start of the interval.

1.4.5 Time span
A time span is a interval between two time codes.

There are two notations. The first notation is by using two time instants and separate them with a hyphen (-). The
first time instant is included in the interval, the second one is excluded. That is, in the interval 124-221, the instant
corresponding to second 124 is included in the interval, but not the instant corresponding to second 221. (E.g., if there
is an instant corresponding to second 220.9999999, it is included.)

The other notation is by using one time instant and one time duration, separate with a plus sign (+). The notation { a
}+{b}isequivalentto{a} -{a+b}.

1.5 Content paths

Content paths are accepted by certain resources as a way of controlling the data that is returned for one or more entity.

1.5.1 Paths

A path consists of a list of keys that correspond to an field in the response. For example:

shape.containerComponent . format
shape.containerComponent.duration

10 Chapter 1. Introduction and data model

Vidispine REST API Documentation, Release 5.x

shape.containerComponent.file.path
shape.containerComponent.file.size

Paths can also be written using a short-hand format:

shape.containerComponent. [format,duration]
shape.containerComponent.file. [path,size]

A path that selects from an element that represents a sequence will select on all elements in the sequence. This path
selects the codec from all audio components for example:

shape.audioComponent .codec

Keys can contains a qualifier that further restricts the response:

shape[tag=original].containerComponent. [format, duration]
shape[tag=original].containerComponent.file. [path,size]

The syntax is:

path = key ('"'.'"" key)=
key = identifier (°°['' qualifier ~"]1'')x
qualifier = identifier ~ ='' identifier
identifier = letter { letter | number }x*

Example

Fetch all metadata fields and groups:

’p:metadata.timespan.[field,group]

Fetch all metadata groups:

’p=metadata.timespan.group

Fetch only “second level” groups:

’p:metadata.timespan.group.group

Fetch the contents of a group called “test_group”:

’p:metadata.timespan.group[name:test_group]

Fetch child metadata fields in a group called “test_group™:

’p:metadata.timespan.group[name:test_group].field

Fetch only the name and value of metadata fields (excluding properties like uuid, t imestamp, etc.):

’p:metadata.timespan.field.[name,value].value

1.5.2 Aliases

Aliases can be used to shorten long path strings and to refer to multiple paths at once. Aliases can have arguments,
making them similar to macros in other programming languages.

1.5. Content paths 11

Vidispine REST APl Documentation, Release 5.x

alias = name [" ('' arg ('','' arg)x '")''"] " °'=''" path ('','' path)*
name = letter { letter | number }=x*
arg = letter { letter | number }x*

As with fields and configuration properties, prefer to prefix alias names with a unique application prefix, to avoid
possible conflicts in the future.

When an alias is evaluated, any arguments in the path, expressed as $arg, will be replaced by the argument value.
The resulting path string must be a valid path. For example, an alias that provides information about a shape:

detail (tag)=shape[tag=$tag].containerComponent.format, shape[tag=$tag].videoComponent.
— [codec, duration]

Configure aliases using the path alias configuration resource.

PUT /configuration/path-alias
Content-Type: application/xml

<PathAliasConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<alias>v (name)=metadata.timespan|[start=-INF] [end=+INF].field[name=$name] .value.value
—</alias>
<alias>detail (tag)=shape[tag=$tag] .containerComponent.format, shape[tag=S$Stag].
—videoComponent. [codec,duration]</alias>
</PathAliasConfigurationDocument>

Default aliases

v(name) metadata.timespan[start=-INF] [end=+INF].field[name=$name] .value.value

Note: Transient metadata will not be returned using content paths, unless explicitly specified in the path. For example,
metadata or metadata.timespan give no transident field. And pathes like v (transient_field) should
be used for transient fields to be returned.

1.6 Constants

An assorted list of constants found in the Vidispine API.
* Job states
e Job types
» Storage states
» Storage types
e File States

» System configuration

12 Chapter 1. Introduction and data model

CHAPTER
TWO

ITEMS AND METADATA

This chapter describes the Item, the central entity in the Vidispine data model, and how metadata (information about
the item) can be associated with the item.

2.1 Imports

Importing is the process of registering essence/media with Vidispine. As Vidispine works with files and objects, either
local or in the cloud, another way of putting it is to say that the media file(s) become under Vidispine’s supervision.

Note: Vidispine does not support machine control or baseband video ingest
(http://en.wikipedia.org/wiki/Serial_digital_interface) . However, growing files are supported, including opera-
tions on items that are currently being ingested.

2.1.1 Importing items

There are several ways of importing media into Vidispine. Which one that is used depends on where the media is
located, the order of operations, and what automation that is required.

On a high level, the different ways of importing are:

Regular import This import uses a URI pointing outside of Vidispine storages to reference the source media.
Vidispine will make a copy of the source material (and sidecar files given by the user) to a Vidispine storage.

The job type for this type of import is PLACEHOLDER_IMPORT. For reference information, see lmport using
a URI.

Raw import Here, the caller supplies the material in the REST API call as data in the request body. This is useful
when the data is stored as a file at the caller’s point, for example when the end user is uploading information
in a web browser. It is also useful when the information resides in a location which Vidispine cannot reach, for
example behind a firewall.

Vidispine supports partial upload, so the caller can split the input in multiple parts in order to better handle
network problems or in order to parallelize uploads.

The job type for this type of import is RAW_IMPORT. Note that the job is not created until all parts of the file
has been uploaded. For reference information, see lmport using the request body.

File import This import is used where the file is already located on a storage which is supervised by Vidispine. In
this type of import, no copying takes place. Instead, a new item is created, and the file is associated with the file.

The job type for this type of import is RAW_IMPORT. For reference information, see /mporting a file from a
storage.

13

http://en.wikipedia.org/wiki/Serial_digital_interface

Vidispine REST APl Documentation, Release 5.x

Auto-import This is a special case of file import, where no explicit call has to be done for every file. The user sets up
rules for how files are imported, and if any sidecar files are processed as well.

The job type for this type of import is AUTO_IMPORT. For reference information, see Auto-import rules.

Placeholder import A placeholder import is an import where the placeholder item and a placeholder shape are cre-
ated before any file is imported. When creating the placeholder shape, the caller gives item metadata and
information about the components. The creation of the placeholder item is a synchronous operation, and the
item id is immediately returned.

Using the item id, the caller can populate the placeholder shape with files, either by posting the URI or the raw
content to the components of the shape. The placeholder import is the import method that gives the highest
flexibility.

For reference information, see Placeholder imports.

Sidecar files

Sidecar files, containing metadata, subtitles, or other supplementary information, can be imported to an item either at
the same time as the item is imported, or afterwards using an sidecar import job.

2.1.2 Steps of import operation

Every import job consists of a number of job steps. Some of the the job steps run in parallel, and some in sequence.
These are the most important steps in an import job:

 Create entities. The item and the original shape is created. This will not take place if the caller already has
created the item before the job (placeholder import).

* Transfer media. The media is transferred from the source URI to a Vidispine storage. This will not take place if
the media is already located on a Vidispine storage (raw import, file import, auto-import).

* Initial media check. The media is checked using a shape deduction by the transcoder. The components of the
original shape are created.

 Transcoding. Using the information about the original shape and all shape tags given by the caller at the invo-
cation of the job, a transcoding task is created and given to the transcoder.

» A media check of all new shapes takes place, as soon as the transcoder has started to work.
* A final media check of the original media and transcoder shapes is done after the transcoder has finished.
* Any XMP, EXIF, or document metadata is extracted.

» Optionally, the original shape can be replaced by a transcoded shape. This is useful if one seeks to have one
“house format” as the original shape format, and all incoming material of other types should be converted into
the house format.

* Sidecar files are imported.

2.1.3 Transcoding

During import, the caller decides which shape tags that are to be created from the original media. By default, thumb-
nails are created according the to the shape tag definitions. The caller can choose which thumbnail service resource
to use, if multiple resources are set up. This is done using the query parameter thumbnailService. In addition
to thumbnails, full-resolution posters images can be created, by supplying a list of timecodes in the query parameter
createPosters. The creation of thumbnails can be disabled by setting the query parameter thumbnails to
false.

14 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

2.1.4 Notifications

As with all jobs in Vidispine, the caller can be notified about the job progress by HTTP messages or other actions.
This is described in the Notifications section.

2.1.5 Adjusting import

The import API is very rich and contains several parameters. Fortunately, most of the time, the default values can be
used.

Import settings

Settings that are used during imports can be set prior to starting an import job. An example of such a setting are
access control lists. The settings can then be used by specifying the id of the settings profile using the query parameter
settings.

Special job metadata values

Special instructions can be supplied to the import job via the the query parameter jobmetadata= { key = value }.
Note that the equals sign is part of the value of the query parameter, so it has to be URL encoded (%3d)

Cut off start and end of video

Given that the video has SMPTE timecodes, an interval can be cut out using the metadata smpteTimeCode and
lastSmpteTimeCode. If the video has no SMPTE timecode, the interval is calculated based on the first timestamp
in the video.

Checksum on file transfer

Normally, the checksum of the imported files will be computed asynchronously in the background. For
PLACEHOLDER_IMPORT jobs, by specifying the jobmetadata checksumMode%$3Dtransfer, the checksum
of files will be computed during the transfer step of the job. See checksumMode.

2.2 Exports

An item export is the process of copying a file from storage to a location accessible by the system.

2.2.1 Exporting items

Exporting the files of an item is an asynchronous operation that is performed by an EXPORT job. The export resource
allows you to:

» Export files for an item.
 Export files for the items in a specific collection or library.
» Export files for specific shapes only.
» Export partial file content, by specifying a start and end time code.
There are a number of operations that can be performed as part of an export. An export job can:
* Restore files from archive if necessary.
* Transcode into the selected formats.
» Rewrite the XMP in the exported files so that it matches the XMP in the item metadata.
* Create a sidecar XML file containing the item metadata.

¢ Transfer the files to the final location.

2.2. Exports 15

Vidispine REST APl Documentation, Release 5.x

Example

To export the original shape of a specific item to a directory on the local file system:

POST /item/VX-191440/export?uri=file:///srv/exported/&tag=original

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169822</jobId>
<user>admin</user>
<started>2014-07-03T09:39:52.96972</started>
<status>READY</status>
<type>EXPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

2.2.2 Export locations

It is possible to pre-define named export locations. When starting an export job, the location name can be passed as a
parameter, the files will then be exported to the URI associated with the export location.

PUT /API/export-location/default-exports
Content-Type: application/xml

<ExportLocationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>file:///srv/exported/</uri>
</ExportLocationDocument>

POST /item/VX-191440/export?locationName=default—-exports&tag=original

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169824</jobId>
<user>admin</user>
<started>2014-07-03T09:49:12.97272</started>
<status>READY</status>
<type>EXPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

See the export location resource for more information.

File naming scripts

Export locations can have a JavaScript associated with them. These work the same way as file name scripts on
storages (see Naming files on storage). The difference is that for export locations, the script will not be retried if there
is a filename conflict. That is, if the filename generated by the script is already taken, then the existing file will be
overwritten.

There are two ways to add a script to an export location, either using XML, or by using the script resource.

Example

Adding a script to an export location using XML.

PUT /export-location/External FTP HTTP/1.1
Content-Type: application/xml

<ExportLocationDocument xmlns="http://xml.vidispine.com/schema/vidispine">

16 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<uri>ftp://user:password@10.2.23.25/export/</uri>

<script>filename = context.getOriginalFilename() + "." + context.getExtension();</
—script>
</ExportLocationDocument>

Example

Adding a script to an export location using the script REST resource.

PUT /export-location/External FTP/script HTTP/1.1
Content-Type: text/plain

filename = context.getOriginalFilename() + "." + context.getExtension();

2.2.3 Export templates
Developer preview

Export templates are a way of expressing complex export content. That is, the exact structure of the files exported can
be described by an XML or JSON structure. See export-templates.

2.3 ltem metadata

The metadata of an item consists of fields, groups and values that belong to a specific interval or timespan. Metadata
that does not apply to a specific interval, that is, it is non-timed, belong to the timespan with a start and end of —INF
and +INF, respectively.

* A timespan describes an interval within the item, denoted by two time codes (a start value and an end value).
* A timespan contains sets of fields and groups.

* Groups are named sets of fields and groups.

* Fields have a name and a set of values of a specific type.

In addition, metadata can apply to a specific component track, identified by a track name, for example, Al or V1
(a name on the regular expression form [A-Za-z]+[1-9] [0-9] %), and a specific language, typically a ISO 639
language code.

Examples of usage can be found at Creating fields/groups, modifying and moving metadata.

2.3.1 Fields

Before you can use fields and groups in the metadata of an item you need to define them. When defining a field you
must select its data type, that is, the type of values that will be accepted for the field. You can also restrict values
further by adding additional restrictions to the field.

PUT /metadata-field/event_type HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<type>string-exact</type>
<stringRestriction>
<pattern>[a-z]+</pattern>
</stringRestriction>
</MetadataFieldDocument>

2.3. ltem metadata 17

Vidispine REST APl Documentation, Release 5.x

HTTP/1.1 200 OK

Field identifiers

Metadata field ids are case sensitive and must have a certain format to avoid conflicts with existing and possible future
fields used by Vidispine or other partners.

A metadata field id (name) is one of:

* Core set, the standard metadata set. Metadata field ids are assigned by Vidispine, and are of the regular expres-
sion form: [A-Za-z] [A-Za-z0-9] . maximum 32 characters.

¢ Common set. Metadata field ids have the form { category } _ { field-name }. The category is of the regular
expression form: [A-Za-z] [A-Za-z0-9] », maximum 4 characters, and assigned by Vidispine to be used
by industry partners. field-name is the regular expression form: [A-Za-z] [A-Za-z0-9] =. Total length of
id is maximum 32 characters, including the underscore (_) character.

¢ Custom set. Metadata field ids have the form { custom-name } _ { field-name }. The custom-name is of
the regular expression form: [A-Za-z] [A-Za-z0-9] *, minimum 5 characters, and assigned by Vidispine.
field-name is the regular expression form: [A-Za-z] [A-Za-z0-9]*. Total length of id is maximum 32
characters, including the underscore (__) character.

Data types

The data types at your disposal are:
Data type Description
date An ISO-8601 compatible timestamp.
float A floating point value.
integer A 32-bit signed integer value.
long A 64-bit signed integer value.
string A string.
string—exact | A string that uses exact matching.
boolean A boolean value.
timeCode A time code value.

string vs string-exact

During index time, the value of a string field is broken into small tokens, and then processed by various filters
before been indexed. By doing so, users would get nice phrase search results, but loose the ability of “exact match”.

The value of a string-exact field, on the other hand, is indexed directly as a single token. This makes a “exact
match” possible, and leads to smaller index size.

Note: In order to make search working properly, a re-index is required if the filed type is changed.

Noindex-types

Deprecated since version 4.1: The index element on the metadata field should be used instead to control if a field
should be indexed.

Use the noindex types for fields that will contain data that should not be indexed, for example if it will never be
searched for or if it contains data in some format, for example JSON or Base64-encoded binary data.

18 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Data type

Description

date-noindex

An ISO-8601 compatible timestamp. No indexing will take place.

float—-noindex

A floating point value. No indexing will take place.

integer—-noindex

A 32-bit signed integer value. No indexing will take place.

long-noindex

A 64-bit signed integer value. No indexing will take place.

string—-noindex

A string. No indexing will take place.

boolean—-noindex

A boolean value. No indexing will take place.

timeCode—noindex

A time code value. No indexing will take place.

Sortable types

Deprecated since version 3.2: Sortable types are deprecated. This is since any field type can be used for sorting as

long as it is indexed.

Sortable types can be used when searching to sort search results. A sortable field is one that uses a sortable types.
Fields that are sortable have two limitations:

1. They can only exist within non-timed metadata.

2. They cannot contain lists of values.

Data type

Description

date-sortable

An ISO-8601 compatible timestamp. Can be used for sorting.

float-sortable

A floating point value. Can be used for sorting.

integer-sortable

An integer value. Can be used for sorting.

string-sortable

A string. Can be used for sorting.

string—exact-sortable | A string that uses exact matching. Can be used for sorting.

Restrictions

Add restrictions to metadata fields for further restrict the values that are to be allowed for a field. The table below
shows the different types of restrictions that exist.

Data Parameter Restriction

type
pattern A Java compatible regular expression

string (http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html)
minLength | A minimum allowed length of the string.
maxLength | A maximum allowed length of the string.

minInclusiveA minimum allowed value (inclusive).

float - : - -
maxInclusiyveA maximum allowed value (inclusive).
, minInclusiveA minimum allowed value (inclusive).
integer - - g g
maxInclusiveA maximum allowed value (inclusive).
long minInclusiyeA minimum allowed value (inclusive).

maxInclusiyveA maximum allowed value (inclusive).

For example, adding a field that only accept integer values in the interval [1, 5].

PUT /metadata-field/event_rating HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>integer</type>
<integerRestriction>
<minInclusive>1</minInclusive>
<maxInclusive>5</maxInclusive>
</integerRestriction>
</MetadataFieldDocument>

2.3. ltem metadata

19

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Vidispine REST APl Documentation, Release 5.x

Note: The naming of your field must follow certain rules, see Field identifiers.

Default values

You can assign a default value to a field if you want a field to be included when retrieving the metadata of an item even
if it has not been set.

Default values are added to the search index, meaning that searching for fields by the default value is possible.

Note: If the default value is changed then the search index should be rebuilt using :http:put::/reindex/(index), or, the
relevant items manually re-indexed using :http:put::/item/(item-id)/re-index.

PUT /metadata-field/testing_default HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<type>integer</type>
<defaultValue>0</defaultvValue>

</MetadataFieldDocument>

’HTTP/l.l 200 OK

Use the defaultValue parameter to control if the field should be included with the default value. Here item VX-12
does not have the field set:

’GET /item/VX-12/metadata?field=testing default&defaultValue=false HTTP/1.1

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-12">
<metadata>
<revision>VX-59,VX-60,VX-57</revision>
</metadata>
</item>
</MetadatalistDocument>

GET /item/VX-12/metadata?field=testing_default&defaultValue=true HTTP/1.1

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-12">
<metadata>
<revision>VX-59,VX-60,VX-57</revision>
<timespan end="+INF" start="-INE">
<field>
<name>testing_default</name>
<value>0</value>
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

20 Chapter 2. Items and Metadata

http:put
http:put

Vidispine REST API Documentation, Release 5.x

2.3.2 Field groups

Metadata fields can be organized in zero or more field groups. Use groups to represents events or other types of objects
in the metadata.

PUT /metadata-field/field-group/event HTTP/1.1
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<data>
<key>description</key>
<value>An event in a clip</value>
</data>
<field>
<name>event_type</name>
<data>
<key>text</key>
<value>Here is some text.</value>
</data>
</field>
<field>
<name>event_rating</name>
</field>
<field>
<name>event_text</name>
<type>string</type>
<data>
<key>someextradata</key>
<value>Some additional data</value>
</data>
</field>
<access>
<user>admin</user>
<permission>DELETE</permission>
</access>
</MetadataFieldGroupDocument>

Fields in a group that have not yet been created will be created for you. The example above also shows how additional
metadata can be added to fields and groups.

2.3.3 Metadata schema

Finally, you can define a metadata schema to make sure that the metadata conforms to a specific data model.

For an example of how to define a metadata schema, see Defining a metadata schema. You can also define the schema
when creating field groups, as shown in Alternate way of creating a schema.

There are three different types of elements in the schema: groups, fields and nested groups. They all have in common
three attributes, name, min and max, and the two latter elements also have the attribute reference.

* Name is the name of the field or group that the element refers to. The table below shows the semantics of a
property for the different elements.

* Min specifies the minimum of times that the element can occur in that context and is a non-negative integer.

* Max specifies the maximum of times that the element can occur in that context and if set to a negative value it
will be interpreted as an infinite number of times.

2.3. Item metadata 21

Vidispine REST APl Documentation, Release 5.x

Group Nested groups Field
min | The minimum number of times | The minimum number of times that | The minimum number of times
that the group can occur at the group can occur inside the given | the field can occur inside the
top-level. group given group
max | The maximum number of The maximum number of times that | The maximum number of times
times that the group can occur | the group can occur inside the given | the field can occur inside the
at top-level. group given group
name| The name of the group. The name of the group. The name of the field.
ref- | - If set, controls whether the group If set, controls whether the group
er- must be a reference or not. must be a reference or not.
ence

Top-level groups are used to specify what a fields and groups that they are allowed to contain. Furthermore they
specify whether or not that group can exist outside of other groups. Nested groups and fields are used to specify the
content of a top-level group.

2.3.4 Hierarchical metadata

Complex data relations can be represented with hierarchical metadata. Let’s say we have three classes in our data
model, Organization, Employee and Project. An organization has a name, one or more employees and one or more
projects. An employee has a name and a title. A project has a name and one or more employees assigned to it. This
data model can be represented by using field groups to represent the classes and fields to represent the attributes.

Below an example of this data model is given:

(Organization)
name: My organization
Employee
name: Bob . Y
Project
title: CEO name: Movie project
- ~ location: London, Berlin
Employee

eo
title: Director
< Employee >
r

Employee \. J
name: Andrew

V'S

title: Editor

\

\. J/

As can be seen in the diagram, weak references are used in the project to point to the employees in the organization to
avoid data duplication. An equivalent XML of the above diagram:

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<group>
<name>organization</name>
<field>
<name>name</name>
<value>My organization</value>
</field>
<group uuid="c9%e268e-03£f4-4378-8061-elc8b8fob45c">
<name>enmployee</name>
<field>
<name>name</name>
<value>Bob</value>
</field>

22 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<field>
<name>title</name>
<value>CEO</value>
</field>
</group>
<group uuid="96a333b1-06£0-4975-adee-78b93c2a7614">
<name>employee</name>
<field>
<name>name</name>
<value>Pete</value>
</field>
<field>
<name>title</name>
<value>Director</value>
</field>
</group>
<group uuid="82£f92192-d2ef-422a-984a-b03cb0476a8a">
<name>enmployee</name>
<field>
<name>name</name>
<value>Andrew</value>
</field>
<field>
<name>title</name>
<value>Editor</value>
</field>
</group>
<group>
<name>project</name>
<field>
<name>name</name>
<value>Movie project</value>
</field>
<field>
<name>location</name>
<value>London</value>
<value>Berlin</value>
</field>
<group>
<name>employee</name>
<reference>9%96a333b1-06f0-4975-adee-78b93c2a7614</reference>
</group>
<group>
<name>enmployee</name>
<reference>82f92192-d2ef-422a-984a-b03cb0476a8a</reference>
</group>
</group>
</group>
</timespan>
</MetadataDocument>

2.3.5 Metadata inheritance

Metadata fields and groups can be marked as inheritable. Inheritable metadata set on a collection will be inherited
to all items in the collection. If an inheritable field is set on the collection and the item, the value on the item takes
precedence.

To enable metadata inheritance add the attribute inheritance="true" to the root element of the MetadataField-

2.3. Item metadata 23

Vidispine REST APl Documentation, Release 5.x

Document:

PUT /metadata-field/event_rating HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine" inheritance=
—"true">
<type>integer</type>
<integerRestriction>
<minInclusive>1</minInclusive>
<maxInclusive>5</maxInclusive>
</integerRestriction>
</MetadataFieldDocument>

When retrieving an item with inherited metadata the attribute inheritance onthe field element will contain the
ID of the collection from which the field was inherited:

GET /item/VX-51/metadata HTTP/1.1
Accept: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-51">
<metadata>
<revision>VX-206,VX-146,VX-145,VX-154</revision>
<timespan start="-INEF" end="+INF">

<field inheritance="Collection/VX-6" uuid="9beeald8-0560-40c2-bfaf-
—~03ff2dd5£f02e" user="admin" timestamp="2018-03-14T13:23:14.238+01:00" change="VX-148
">
<name>event_rating</name>
<value uuid="593e6678-1lace-4d69-9362-1add839024bf" user="admin"
—timestamp="2018-03-14T13:23:14.238+01:00" change="VX-148">3</value>
</field>

</timespan>
</metadata>
</item>
</MetadatalListDocument>

Relative timespan inheritance
New in version 5.0.

By setting the absoluteTime attribute in the CollectionDocument, timespans inherited from a collection are in-
dividually offset by the startTimeCode value of child items. In other words, timespans set on the collection are
interpreted as absolute, and converted to the usual relative (zero-based) timecodes for each item.

Example

To create a collection using this feature:

POST /collection?name=Sports—Game
Accept: application/xml

<CollectionDocument absoluteTime="true" xmlns="http://xml.vidispine.com/schema/
—vidispine">
</CollectionDocument>

24 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

If this collection contains an item with metadata field st art TimeCode with value 100@PAL.:

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<field>
<name>startTimeCode</name>
<value>100Q@PAL</value>
</field>
</timespan>
</MetadataDocument>

and the collection metadata contains an inheritable field, in this case a custom field called goal:

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="500@PAL" end="1000C@PAL">
<field>
<name>goal</name>
<value>by John Smith</value>
</field>
</timespan>
</MetadataDocument>

The metadata on the item then shows the time of the inherited field relative to its start TimeCode value:

GET /item/VX-1l/metadata

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<timespan end="400C@PAL" start="900Q@PAL">
<field>
<name>goal</name>
<value>by John Smith</value>
</field>
</timespan>

</MetadataDocument>

The default behaviour when absoluteTime is false ornot set, or no startTimeCode is set on the item, is that
that timespans are inherited unchanged from the collection.

See also filterInheritedTimespans.

2.3.6 Versioning

Metadata essentially consists of key-value pairs. The key of a value is its UUID, but can also often be described by
the quintuple (timespan, group, field name, track, language). However the latter does not guarantee unambiguity. If at
any point a key corresponds to more than one value, then a conflict exists.

Change sets

A change set is a set of changes to the metadata. The change set has a unique id and can be related to other change
sets. The current revision of the metadata is essentially the superset of all change sets.

Example

If we start with a newly imported item, its metadata might look like this:

2.3. Item metadata 25

Vidispine REST APl Documentation, Release 5.x

GET item/VX-250/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-250">
<metadata>
<revision>VX-30</revision>
<timespan end="+INF" start="-INEF">
<field>
<name>durationSeconds</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00" user="system
. ">232.32</value>
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00" user="system
—">232320000@1000000</value>
</field>
</timespan>
</metadata>
</item>
</MetadatalistDocument>

Assume two users, ul and u2, both wants to add a title, not knowing of each others changes.

PUT item/VX-250/metadata?revision=VX-30
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INEF" start="-INF">
<field>
<name>title</name>
<value>ul's title</value>
</field>
</timespan>
</MetadataDocument>

PUT item/VX-250/metadata?revision=VX-30
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INE" start="-INF">
<field>
<name>title</name>
<value>u2's title</value>
</field>
</timespan>
</MetadataDocument>

The result of the two operations will result in a conflict, because u2 did not know of the change made by ul.

GET item/VX-250/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-30,VX-32,VX-31</revision>
<timespan end="+INE" start="-INEF">

26 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<field conflict="true">
<name>title</name>

<value change="VX-32" timestamp="2010-03-19T09:16:56.419+01:00" user=
—"u2">u2's title</value>
<value change="VX-31" timestamp="2010-03-19T09:16:25.454+01:00" user=
—"ul">ul's title</value>
</field>
<field>
<name>durationSeconds</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00" user=
—"system">232.32</value>
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00" user=
—"system">232320000@1000000</value>
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>
In order to resolve the conflict ul inserts another change set:
PUT item/VX-250/metadata?revision=VX-30,VX-32,VX-31
Content-Type: application/xml
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INE" start="-INF">
<field>
<name>title</name>
<value>ul's and u2's title</value>
</field>
</timespan>
</MetadataDocument>
Which results in:
GET item/VX-250/metadata
<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-30,VX-33</revision>
<timespan end="+INE" start="-INEF">
<field>
<name>title</name>
<value change="VX-33" timestamp="2010-03-19T09:21:28.692+01:00" user=
—"ul">ul's and u2's title</value>
</field>
<field>
<name>durationSeconds</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00" user=
—"system">232.32</value>
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00" user=

—"system">232320000@1000000</value>

2.3. Item metadata

27

Vidispine REST APl Documentation, Release 5.x

</field>
</timespan>

</metadata>

</item>

</MetadatalListDocument>

A graph of this can be seen below. Worth noting is that it is the leaves of the graph that represent the current revision.

VX-32

VX-31

[-INF, +INF] [-INF,+INF]
title = u2's title title = ul's title

VX-30
[-INF,+INF]
durationSeconds = 232.32

VX-30
[-INF,+INF]
user = admin

VX-30
[-INF,+INF]
durationTimeCode = 232320000@1000000

N/

VX-33
[-INF,+INF]

title = ul's and u2's title

2.3.7 Structure of metadata

Lists of values

A field can contain multiple values.

Example

Retrieving the current metadata:

GET /item/VX-250/metadata

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-7612">

<metadata>

<revision>VX-16113,VX-16114</revision>
<timespan end="+INF" start="-INE">
<field change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user=
—"system" uuid="4cc88be0-4fc3-4243-a6e0-blal5lebcdel">
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00"
—user="system" uuid="b98a5553-a6ca-4235-bblid-fcl7fdf7eda3">original</value>
</field>
<field change="VX-16113" timestamp="2010-08-16T08:28:18.366+02:00" user=
—"admin" uuid="d35fb0ea-cd05-4429-a707-0248420b3fe7">
<name>field_a</name>
<value change="VX-16113" timestamp="2010-08-16T08:28:18.366+02:00"_,
—user="admin" uuid="31602cd8-4cfa-4912-a6fb-d731841f880c">my value</value>
</field>
</timespan>
</metadata>

</item>

</MetadataListDocument>

Adding a new value to field_a, if the mode attribute is left out the existing value will be modified instead of adding

it as a new value.

PUT /item/VX-250/metadata

Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

28

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<timespan start="-INE" end="+INE">
<field>
<name>field_a</name>
<value mode="add">my other value</value>
</field>
</timespan>
</MetadataDocument>

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-16113,VX-16114,VX-16115</revision>
<timespan end="+INF" start="-INEF">
<field change="VX-16115" timestamp="2010-08-16T08:35:18.550+02:00" user=
—"admin" uuid="d35fb0ea-cd05-4429-a707-b248420b3fe7">
<name>field_a</name>
<value change="VX-16113" timestamp="2010-08-16T08:28:18.366+02:00"_,
—user="admin" uuid="31602cd8-4cfa-4912-a6fb-d731841f880c">my value</value>
<value change="VX-16115" timestamp="2010-08-16T08:35:18.550+02:00"_,
—user="admin" uuid="cb47404c-5d69-466e-ad61-733b2cf8496b">my other value</value>
</field>
<field change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user=
—"system" uuid="4cc88be0-4fc3-4243-a6e0-blal5lebcdel">
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00"
—user="system" uuid="b98a5553-a6ca-4235-bbl4d-fcl7fdf7eda3">original</value>
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

In order to modify either of the two values of the field the UUID must be specified, otherwise ambiguity will exist.

PUT /item/VX-250/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INE" end="+INEF">
<field>
<name>field_a</name>
<value>my new value</value>
</field>
</timespan>
</MetadataDocument>

400 An invalid parameter was entered
Context: metadata
Reason: Ambiguous path to value

Values can be removed by setting the mode attribute to remove.

PUT /item/VX-250/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">

2.3. Item metadata 29

Vidispine REST APl Documentation, Release 5.x

<field>
<name>field_a</name>
<value mode="remove" uuid="31602cd8-4cfa-4912-a6fb-d731841£880c"/>
</field>
</timespan>
</MetadataDocument>

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-16114,VX-16115,VX-16117</revision>
<timespan end="+INE" start="-INEF">
<field change="VX-16117" timestamp="2010-08-16T08:48:21.474+02:00" user=
—"admin" uuid="d35fb0ea-cd05-4429-a707-b248420b3fe7">
<name>field_a</name>
<value change="VX-16115" timestamp="2010-08-16T08:35:18.550+02:00"_,
—user="admin" uuid="cb47404c-5d69-466e-ad61-733b2cf8496b">my other value</value>
</field>
<field change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user=
—"system" uuid="4cc88be0-4fc3-4243-a6e0-blalS5lebcdel">
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" _,
—user="system" uuid="b98a5553-a6ca-4235-bbl4d-fcl7fdf7eda3">original</value>
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

Weak references

Groups and fields can refer to other groups and fields by using weak references. Furthermore the metadata of other
items and collections as well as global metadata can be referenced.

Example: referencing global metadata

Adding some global metadata:

PUT /metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<group mode="add">
<name>test</name>
<field>
<name>example_name</name>
<value>Global name</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<revision>VX-76,VX-82,VX-80,VX-84</revision>
<timespan start="-INEF" end="+INEF">

30 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<group uuid="aaf7fde8-308d-4555-8a8b-8954f5ec5fd9" user="admin" timestamp="2010-
—12-27T09:40:32.667+01:00" change="VX-84">
<name>test</name>
<field uuid="376e831b-8e8e-4cla-a7b2-dfdbb49d2e20" user="admin" timestamp="2010-
—12-27T09:40:32.667+01:00" change="VX-84">
<name>example_name</name>
<value uuid="431d8078-fb05-42f0-87ae-a%a73b8c4dl" user="admin" timestamp=
—"2010-12-27T09:40:32.667+01:00" change="VX-84">Global name</value>
</field>
</group>
</timespan>
</MetadataDocument>

Referencing it from an item:

PUT /item/VX-15/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INEF">
<group mode="add">
<name>test</name>
<reference>aaf7fde8-308d-4555-8a8b—-8954f5ec5fd9</reference>
</group>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-15">
<metadata>
<revision>VX-86,VX-87</revision>
<timespan end="+INF" start="-INF">
<field change="VX-86" timestamp="2010-12-27T09:44:43.594+01:00" user="system"
—uuid="154cbblc-575d-42£8-947d-5b0d38a78e96">
<name>shapeTag</name>
<value change="VX-86" timestamp="2010-12-27T09:44:43.594+01:00" user="system
<" uuid="eb05a782-75f1-4e42-9e5f-4d93be6f4247">0original</value>
</field>
<group change="VX-87" timestamp="2010-12-27T09:45:21.786+01:00" user="admin"_,
—uuid="7c3d0bl2-9b0a-48b8-b603-67fdcc26108d">
<name>test</name>
<referenced id="" type="global" uuid="aaf7fde8-308d-4555-8a8b-8954f5ec5£d9"/

—

>
<field change="VX-84" timestamp="2010-12-27T09:40:32.667+01:00" user="admin
<" uuid="376e831b-8e8e-4cla-a7b2-dfdbb49d2e20">
<name>example_name</name>
<value change="VX-84" timestamp="2010-12-27T09:40:32.667+01:00" user=
—"admin" uuid="431d8078-fb05-42f0-87ae—-a%ea73b8c4dl">Global name</value>
</field>
</group>
</timespan>
</metadata>
</item>
</MetadataListDocument>

2.3. Item metadata 31

Vidispine REST APl Documentation, Release 5.x

2.3.8 Metadata defined by the systems

Name Description

user The name of the user that imported the item. (Removed in 4.14, see below.)
title The title of the item.

shapeTag A shape tag that is used on a shape belonging to the item.

representativeThumbnail

A thumbnail that is representative of the item. Initially set by the system, but
can be modified by a user.

representativeThumbnail]

INSame hs above, with the exception that no authentication is required.

itemId The id of the item.

mediaType The type of the media, e.g. video/audio/image/document/pdf/binary.
mimeType The mime type of the media, e.g. image/jpeg.

created The time when item was created.

startTimeCode The start time of the item expressed as a time code.
startSeconds The start time of the item expressed in seconds.

fieldvValidationError

A error message that can be set if a metadata-field did not validate.

schemaValidationError

A error message that corresponds to what have failed during validation
against a metadata-schema.

originalFilename

The original file name of the essence.

originalAudioCodec

The original audio codec of the essence.

originalVideoCodec

The original video codec of the essence.

originalHeight The original height of the essence.
originalWidth The original width of the essence.
originalFormat The original container format of the essence.
durationSeconds The duration of the item expressed in seconds.
durationTimeCode The duration of the item expressed as a time code.

Deprecated since version 4.14: The system field user is not available any more, use the transient field __user
instead. A transient field user ensures backwards compatibility for existing applications but will be removed in a

future version.

Transient metadata

Transient metadata is a special type of metadata that is not revision controlled and only continuously updated by the
system. It can be used to create complex search queries. All transient metadata are prefixed by double underscores.

32

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Name Description In-
dexed
__user The name of the user that imported the item. | Yes
__owner The name of the user that the item currently belongs to. | Yes
__collection The id of the collection an item belongs to. Yes
__collection_size The number of collections that the item belongs to. Yes
__ancestor_collection The id of an ancestor collection of an item. Yes
__ancestor_collection_size | The number of ancestor collections of an item. Yes
__shape The id of a shape that belongs to the item. Yes
__shape_size The number of shapes that the item has. Yes
_ shape_last_added The creation date of the newest shape of the item. Yes
__shapetag_{tag}_hash[_{a}]| The checksum of a file of the item, where a is the algorithm. | Yes
_ _placeholder_shape_size The number of placeholder shapes that the item has. Yes
__version The essence version numbers. Yes
___version_count The number of essence versions that the item has. Yes
__storage The id of a storage that has files that belongs to the item. Yes
__storage_size The number of storages that has files that belongs to the Yes
item.
_ _storage_{tag} The id of a storage that has files that belongs to the item. Yes
__storage_{tag}_size The number of storages that has files that belongs to the Yes
item.
__storagegroup The id of a group that has files that belongs to the item. Yes
__storagegroup_size The number of groups that has files that belongs to the item. | Yes
__sequence The format of a sequence that belongs to the item. Yes
__sequence_size The number of sequences that the item has. Yes
__metadata_last_modified The time of the last metadata update. Yes
__external_id The external identifier assigned to the item. Yes
__deletion_lock_id The id of the effective deletion lock. Yes
__deletion_lock_expiry The expiration time of the effective deletion lock. Yes
For collections, the following transient metadata fields exist:
Name Description Indexed
__user The name of the user that imported the collection. Yes
_ child_collection The id of the collection that the collection contains. Yes
__child _collection_size The number of collections that the collection contains. Yes
__parent_collection The id of the collection that the collection belongs to. Yes
_ _parent_collection_size The number of collections that the collection belongs to. Yes
__ancestor_collection The id of an ancestor collection of a collection. Yes
__items_size The number of direct item children. Yes
__ancestor_collection_size | The number of ancestor collections of a collection. Yes
__metadata_last_modified The time of the last metadata update. Yes
__folder_mapped True if the collection maps to a folder, else false. Yes
__child_folder_collection The id of the folder collection that the collection contains. Yes
__parent_folder_collection | The id of the folder collection that the collection belongs to. | Yes
__external_id The external identifier assigned to the collection. Yes
_ deletion_lock_id The id of the effective deletion lock. Yes
_ deletion_lock_expiry The expiration time of the effective deletion lock. Yes

Changed in version 4.15: The deletion lock transient metadata fields were added.

The transient field ___user has been introduced and replaces the system field user. A transient field user ensures
backwards compatibility for existing applications but will be removed in a future version.

2.3. ltem metadata

33

Vidispine REST APl Documentation, Release 5.x

File metadata

Metadata can be parsed from some file formats. The metadata is inserted as non-temporal metadata contained in
different groups, depending on the source of the metadata. The exact structure of the groups may differ based on the
encountered metadata. The parsing of file metadata must be enabled in the configuration.

Name Type | Description

xmp_root Group | The root group containing all XMP metadata.

document_root Group | The root group for document metadata present in Office and PDF files.
document_text Field The text present in the document

document_metadata | Group | The group containing the metadata of the document.

2.4 Searching for items (and collections)

2.4.1 Searching in Vidispine

Searching in Vidispine is implemented using either Solr or OpenSearch as the backend. This allows functionality such
as boolean operators, faceted searching, term highlighting, search term suggestions, etc. It is possible to search for just
items, just collections, or both at the same time, depending on which RESTful resource the search request is made to
(/item, /collection or /search). The search criteria are expressed using an XML or JSON document of type
ItemSearchDocument, described in more detail below.

Tip: For best performance
* Don’t retrieve the hit count if you don’t use it.
» Use filters if possible as these can be cached separately and do not affect the score nor highlighting.

* Disable full text indexing for fields that contain JSON or other content that should not be included in the full text
index.

* Only fetch the specific metadata fields and groups that you need instead of fetching all metadata. See Get
information.

« If you only want to search in the generic metadata, or if your application does not use timed metadata, then
make sure to specify " <intervals>generic</intervals>.

2.4.2 Search history

Vidispine stores the search document, as well as the timestamp and user for all searches that are made. If the same
user makes an identical search twice, only one entry will be shown in the search history, with the timestamp of the last
search.

2.4.3 Queries

The following descriptions apply to version 1 of the query syntax. There is a version 2 available. See syntax versions.

Boolean operators

Boolean operators AND, OR and NOT can be used in search queries. A boolean operator can contain zero or more
field-value pairs and zero or more boolean operators.

Implicit operators

If no operators are specified operators are implicitly added using the following rules:

34 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Multiple values within a field

If a field contains multiple values, an implicit OR operator is added.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
<value>mp4</value>
</field>
</ItemSearchDocument>

is logically equivalent to

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mpi4</value>
</field>
</operator>
</ItemSearchDocument>

Multiple field elements at top level

If a document has multiple field elements at top level, an implicit AND operator is added.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mpi4</value>
</field>
</ItemSearchDocument>

is logically equivalent to

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="AND">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mp4</value>
</field>
</operator>
</ItemSearchDocument>

2.4. Searching for items (and collections)

35

Vidispine REST APl Documentation, Release 5.x

Phrase search

Vidispine supports wildcard search and phrase search for field type string and string—exact. A phrase is a
group of words surrounded by double quotes, such as “foo bar”.

Wildcard search

The wildcard special character in Vidispine is *, meaning matching zero or more sequential characters.

he* | words start with”he”, like he, hey, hello
h*e | will match he, hope, house, etc.
*he | words end with “he”, like he, the.

Note: wildcard in a phrase search is not supported (e.g. "foo b*" won’t be able to find foo bar).

Range search

Use a range query to find fields with values within a certain range. The minimum and maximum values for the data
type of the field can be specified using the attributes minimum and maximum.

To search for any values:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>app_score</name>
<range>
<value minimum="true"/>
<value maximum="true"/>
</range>
</field>
</ItemSearchDocument>

To search for values in range [10..20], that is, inclusive of 10 and 20:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>app_score</name>
<range>
<value>10</value>
<value>20</value>
</range>
</field>
</ItemSearchDocument>

The exclusiveMinimum and/or the exclusiveMaximum attributes can be used to perform exclusive range
queries.

For example, to search for values between 10 and 20 (exclusive):

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>app_score</name>
<range exclusiveMinimum="true" exclusiveMaximum="true">
<value>10</value>
<value>20</value>
</range>
</field>
</ItemSearchDocument>

36 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Search intervals

By setting <intervals> in the ItemSearchDocument, search criteria can be applied to metadata within different ranges
accordingly:

generic | only search generic metadata, a.k.a metadata inside (-INF, +INF)
timed search metadata within ranges other than (-INF, +INF)
all search metadata both timed and generic metadata (default option)

For example, search items with only timed metadata containing originalFormat=dv:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<intervals>timed</intervals>
</ItemSearchDocument>

Group search

Searching items by its metadata groups are supported.

Example

To find items with any groups:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
</group>

</ItemSearchDocument>

To find items without any groups:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<group>
</group>
</operator>
</ItemSearchDocument>

To find items without a “movie_info” group:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<group>
<name>movie_info</name>
</group>
</operator>
</ItemSearchDocument>

To find items with a “movie_info” group containing two fields with specific values. Note that the AND is implicit.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
<name>movie_info</name>
<field>
<name>movie_name</name>

2.4. Searching for items (and collections) 37

Vidispine REST APl Documentation, Release 5.x

<value>StarWars</value>

</field>

<field>
<name>episode_no</name>
<value>1l</value>

</field>

</group>
</ItemSearchDocument>

To find items with a “movie_info” group with an episode number of either 1 or 2.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
<name>movie_info</name>
<operator operation="OR">
<field>
<name>episode_no</name>
<value>1l</value>
</field>
<field>
<name>episode_no</name>
<value>2</value>
</field>
</operator>
</group>
</ItemSearchDocument>

To find items with either a “movie_info” or a “video_info” group.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<group>
<name>movie_info</name>
</group>
<group>
<name>video_info</name>
</group>
</operator>
</ItemSearchDocument>

Query syntax versions

In 4.2.0 a new query syntax was introduced. In order to use the new syntax, set the version attribute in the search
document to 2. If no version is set, the old query syntax will be used (version 1).

Version 1

1. The search value of a st ring-exact field is always interpreted literally.

2. The search value of a st ring field is interpreted literally only if it’s surrounded by quotation marks. In other
cases, implicit OR s are used in between the words.

3. Multiple values means OR. Multiple text elements means AND.

4. The noescape attribute is needed, if user want to search quotation marks or wildcard characters literally in a
string field;

38 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<?xml version="1.0"?>
<ItemSearchDocument>
<field>
<name></name>
<value noescape="true">\"foo bar\"</value>
<value noescape="true">foo*</value>
</field>
</ItemSearchDocument>

Version 2

1. One or more SPACE characters means logical AND. So <value>foo bar</value> and <value>foo
bar</value> means searching a field value containing both foo and bar.

2. Multiple values means OR. To search for title:foo OR title:bar, in the title or text:

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>title</name>
<value>foo</value>
<value>bar</value>
</field>
</ItemSearchDocument>

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<text>foo</text>
<text>bar</text>

</ItemSearchDocument>

3. Special characters in Vidispine search are ", SPACE, \, and *. Any character followed by \ is considered as
literal. so \ * means literal *, and \ f is the same as the single character £.

4. The characters inside quotes are consider as literal, except ". A \" is still needed to represent a literal quote
inside quotes.

5. The noescape attribute of a metadata field value has been removed since Vidispine 4.2.

6. Empty stings, " ", are ignored if part of a value. Otherwise they are included. See the example table.

2.4. Searching for items (and collections) 39

Vidispine REST APl Documentation, Release 5.x

Operators and special characters

Query

Version 1

<text>foo bar</text>

foo OR bar

<field>foo bar</field>

foo OR bar

<text>foo</text>
<text>bar</text>

foo AND bar

<field>foo</field>
<field>bar</field>

foo OR bar !

<field>foo</field>

To highlight the differences between the two versions: <field>""</field>

foo OR ""

<field>foo ""
bar</field>

foo \"\" bar

"foo bar"

"foo bar"

\\"foo\\"

A" Foo\\\\" 2

foox

foox

fool\\x

foo* 2

foo_bar?

foo\\\\ OR bar?

String types

An example of the differences when searching string fields, assuming a field value of foo bar.

foo bar \ \
Version 1 Version 2
string string-exact | string | string-exact
foo Y N Y N
FOO Y N Y N
foo bar Y Y Y NE
"foo bar" | Y N4 Y Y®©
foo\ bar Y N Y Y?
"foo xy" N N N N
foo xy Y N N7 N

2.4.4 Filters

A search filter is a query does not affect scoring nor highlighting, similar to a filter query in Solr. A filter can:

* Contain both fields and operators.

* Be named and excluded from facets.

Example

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<filter operation="OR" name="productType">
<field>
<name>type</name>
<value>pc</value>

I Use * <operator operation="AND"> to search for foo AND bar for example.
2 Use noescape=true to search for literal ", » and SPACE.

3 Here _ means SPACE.

3 SPACE is a special character and needs to be escaped in order to get literally meaning.

4 The character " is interpreted literally.

6 It’s a phrase search, and “string-exact” only have one token in the index, which the same as the query in this case.

71t’s foo OR xy inversion 1, and foo AND xy in version 2.

40 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

</field>
<field>
<name>type</name>
<value>phone</value>
</field>
</filter>
</ItemSearchDocument>

2.4.5 Joins

Joint searches on metadata of item, share and file are supported. The old search schema is extended with three new
search criterion types: ' <item>, ' <shape>, and * <file>. Please refer to xmlSchema.xsd for the full schema.

Depending on the search result needed(items, shapes, or files), ItemSearchDocument,
ShapeSearchDocument or FileSearchDocument should be sent to Vidispine respectively. Those
three search documents use the same syntax, only the document names are different.

Note:
1. Aversion = 2 document is needed in order to perform the joint search.
2. The * <intervals> constrain only works for item metadata in a ItemSearchDocument. It has not effect
in ShapeSearchDocument and FileSearchDocument.
Examples

Joins on item search

Find items containing shapes with metadata shapeCodec=mp4:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</ItemSearchDocument>

Find items that have generic metadata title = vidispine, and contain a shape with shapeCodec=mp4, and
contain a file with metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>

2.4. Searching for items (and collections) 41

Vidispine REST APl Documentation, Release 5.x

<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
<intervals>generic</intervals>
</ItemSearchDocument>

Find items that have generic metadata title = vidispine, and contain a shape with shapeCodec=mp4, and
contain a file with metadata filetitle = demo

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
<intervals>generic</intervals>
</ItemSearchDocument>

Find items that have metadata title = vidispine, and contain a shape with shapeCodec=mp4; the shape
must contain a file with metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>item</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
</shape>
</ItemSearchDocument>

42 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Operators are also supported as part of a search criterion.

Find items that have metadata title = vidispine, or items that have metadata title demo and contain

shapes with shapeCodec=mp4:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<operator operation="AND">
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</operator>
</operator>
<intervals>all</intervals>
</ItemSearchDocument>

Joins on search shapes

Find shapes belong to items that have metadata title = vidispine, and the shape should have a file with
metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ShapeSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>

2.4. Searching for items (and collections) 43

Vidispine REST APl Documentation, Release 5.x

</file>
</ShapeSearchDocument>

Find shapes belong to items that have files with metadata filetitle = demo, and metadata title
vidispine:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ShapeSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</ShapeSearchDocument>

Joins on file search

Find files belong to items with metadata title=demo; it should also belongs to shapes with metadata

shape_title=shape

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FileSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
<shape>
<field>
<name>shape_title</name>
<value>shape</value>
</field>
</shape>
</FileSearchDocument>

Joins on collection search

Note: Not yet supported with OpenSearch.

Find collections that have metadata title=vidispine or collections contains an item with metadata

title=demo:

44 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>title</name>
<value>vidispine</value>
</field>
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
</operator>
</ItemSearchDocument>

To find items with specific shapes or files, use a shape or £ile query as a subquery of the item query.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>title</name>
<value>vidispine</value>
</field>
<item>
<shape>
<field>
<name>shape_title</name>
<value>demo</value>
</field>
</shape>
</item>
</ItemSearchDocument>

Important: Using an item subquery is only possible when the search interval is either generic or all. When
using t imed then no item subquery is allowed.

Find empty collections.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<item>
</item>
</operator>
</ItemSearchDocument>

Collection hierarchy joins

New in version 5.5.

Collection joins can be used to search for collections and items based on their relationships by using the
"<collection> element in the ItemSearchDocument. The " <collection> element may only be used when
searching explicitly for items or collections. To specify the relationship between the entities use the relation
attribute with one of the attributes child, parent, ancestor or descendant. If no relation is specified the

2.4. Searching for items (and collections) 45

Vidispine REST APl Documentation, Release 5.x

child relation is assumed.

Note: Not supported with OpenSearch.

Important: Using a collection subquery is only possible when the search interval is either generic or all. When
using t imed no collection subquery is allowed.

Example

Find collections that have a child collection with title=vidispine.

PUT /collection
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<collection>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</collection>
</ItemSearchDocument>

Example

Find collections that have a parent collection with title=collectionl or title=collection2 and a de-
scendant collection containing an item with title=vidispine.

PUT /collection
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<collection relation="parent">
<operator operation="OR">
<field>
<name>title</name>
<value>collectionl</value>
</field>
<field>
<name>title</name>
<value>collection2</value>
</field>
</operator>
</collection>
<collection relation="descendant">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
</collection>
</ItemSearchDocument>

46 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Example

The " <collection> element may also be nested to search for complex relationships. Find collections that have a
grandparent with title=vidispine.

PUT /collection
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<collection relation="parent">
<collection relation="parent">
<field>
<name>title</name>
<value>vidispine</value>
</field>
</collection>
</collection>
</ItemSearchDocument>

Example

The " <collection> subquery may also be used when searching for items. But only the parent and ances-
tor relations can be used (items can not contain collections). Find all items that have an ancestor collection with
title=vidispine

PUT /item
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<collection relation="ancestor">
<field>
<name>title</name>
<value>vidispine</value>
</field>
</collection>
</ItemSearchDocument>

2.4.6 Highlighting

Highlighting can be enabled to determine which part of the metadata that matched the query.

Use the field element to enable highlighting for a certain set of fields only.

<highlight>
<field>title</field>
</highlight>

Example

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

2.4. Searching for items (and collections) 47

Vidispine REST APl Documentation, Release 5.x

<field>
<name>title</name> <!-- Search for the words "interview" or "credits" within,,
—~the title ——>
<value>interview</value>
<value>credits</value>

</field>
<highlight> <!/-- Having a highlight element will enable highlighting even if it is_,
—empty —-—>
<matchingOnly>true</matchingOnly> </-- Only highlight fields that actually,,
—matched the query. -->
<prefix>[</prefix> <!/-- A string that appears before the highlighted text —->
<suffix>]</suffix> <!-- A string that appears after the highlighted text ——>
</highlight>

</ItemSearchDocument>

<ItemListDocument>

<item id="VX-123" start="-INF" end="+INF"> <!-- Matches in the document were on,,
—~the interval [-INF, +INF] —-—>
<timespan start="-INF" end="100"> <!-- One match on [-INF, 100] -->
<field>title</field>
<value>[Interview] with the CEO.</value> <!-— The word "interview” 1is_,
—highlighted with the suffix and prefix —-->
</timespan>
<timespan start="400" end="+INF"> <!-- Another match on [400, +INF] ——>
<field>title</field>
<value>Closing [credits]</value> <!/-- The word "credits" is highlighted with_,
—~the suffix and prefix ——>
</timespan>
</item>

</ItemListDocument>

Note: When searching with cursor in non-generic timespans, only one timespan per item or collection contains
highlighting information.

2.4.7 Sorting

Results can be sorted using sortable fields. Multiple fields can be used for sorting and are used in the order they are
given.

It is also possible to sort by relevance by specifying _relevance as the field name.

Specify _type to sort by type. The type of an item is item and collection for collections, so if you want
collections first in the results, then sort on _t ype in ascending order.

Any field can be used for sorting, it does not need to flagged as sortable. If a field contains multiple values: ascending
order will compare with its minimum value and descending order will compare with its maximum value.
Example

Listing all items sorted according to length in descending order and format in ascending order.

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<sort>

48 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<field>durationSeconds</£field>
<order>descending</order>

</sort>

<sort>
<field>originalFormat</field>
<order>ascending</order>

</sort>

</ItemSearchDocument>

Case-insensitive sorting
New in version 5.2.2.

Field values can be sorted case-insensitively if caseSensitiveSorting=false is configured in the metadata
field definition:

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string-exact</type>
<caseSensitiveSorting>false</caseSensitiveSorting>
</MetadataFieldDocument>

A reindex is required after the configuration change for it to take effect.

2.4.8 Faceting

Faceting is used to show number of matching items for one or more sub-constraints for a given result-set. You might
for example be interested in displaying how many of the items returned from a search are of type video, how many
are of type audio, and how many are of type data.

There are two types of operations that can be performed, counting and specifying ranges. Counting means that it will
count the occurrences of each unique value. When specifying ranges, the number of occurrences within a certain range
is counted. Both the start and the end of a range are inclusive and “*” can be used to represent minimum or maximum.
Note that faceted search only can be used over non-timed metadata.

Example
item category | price
VX-251 | tv 100
VX-252 | radio 200
VX-253 | tv 300

VX-254 | phone 400
VX-255 | radio 500
VX-256 | radio 100
VX-257 | phone 200
VX-258 | phone 300
VX-259 | phone 200
VX-260 | phone 300

Consider the items in the table above, together with their metadata on the fields my_category and my_price. A
faceted search that should count the occurrences of each category and the occurrences of prices within the ranges [*,
199], [200, 399] and [400, *] might look like this:

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

2.4. Searching for items (and collections) 49

Vidispine REST APl Documentation, Release 5.x

<facet count="false">
<field>my_price</field>
<range start="+" end="199"/>
<range start="200" end="399"/>
<range start="400" end="+"/>
</facet>

<facet count="true">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>13</hits>

<item i1d="VX-248" start="-INF" end="+INF"/>
<item 1d="VX-249" start="-INF" end="+INEF"/>
<item id="VX-250" start="-INF" end="+INEF"/>
<item id="VX-251" start="-INF" end="+INF"/>
<item i1d="VX-252" start="-INF" end="+INF"/>
<item id="VX-253" start="-INF" end="+INEF"/>
<item i1d="VX-254" start="-INF" end="+INEF"/>
<item i1d="VX-255" start="-INF" end="+INF"/>
<item id="VX-256" start="-INEF" end="+INE"/>
<item id="VX-257" start="-INF" end="+INEF"/>
<item id="VX-258" start="-INF" end="+INF"/>
<item id="VX-259" start="-INF" end="+INE"/>
<item i1id="VX-260" start="-INF" end="+INEF"/>
<facet>

<field>my_category</field>
<count fieldValue="phone">5</count>
<count fieldValue="radio">3</count>
<count fieldValue="tv">2</count>
</facet>

<facet

>

<field>my_price</field>
<range start="x" end="199">2</range>
<range start="200" end="399">6</range>
<range start="400" end="x">2</range>
</facet>
</ItemListDocument>

Now assume we want to see how the prices are distributed for phones, we could filter the search in the following

manner:

PUT /item
Content-T

ype: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<filte

r>

<field>
<name>my_category</name>
<value>phone</value>

</f

ield>

</filter>
<facet count="false">
<field>my_price</field>

<range start="x"

end="199"/>

50

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<range start="200" end="399"/>
<range start="400" end="+"/>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<hits>5</hits>
<item id="VX-254" start="-INF" end="+INF"/>
<item id="VX-257" start="-INEF" end="+INF"/>

<item id="VX-258" start="-INF" end="+INF"/>
<item id="VX-259" start="-INF" end="+INEF"/>
<item id="VX-260" start="-INF" end="+INF"/>
<facet>

<field>my_price</field>
<range start="x" end="199">0</range>
<range start="200" end="399">4</range>
<range start="400" end="x">1</range>
</facet>
</ItemListDocument>

The opposite is also possible, to see the distribution of the categories over a range of prices.

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<filter>
<field>
<name>my_price</name>
<range start="200" end="399"/>
</field>
</filter>

<facet count="true">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>6</hits>

<item id="VX-252" start="-INF" end="+INF"/>
<item 1d="VX-253" start="-INF" end="+INE"/>
<item id="VX-257" start="-INEF" end="+INE"/>
<item i1id="VX-258" start="-INF" end="+INF"/>
<item 1d="VX-259" start="-INF" end="+INE"/>
<item id="VX-260" start="-INF" end="+INF"/>
<facet>

<field>my_category</field>
<count fieldValue="phone">4</count>
<count fieldValue="radio">1</count>
<count fieldValue="tv">1</count>
</facet>
</ItemListDocument>

For counted facets, it is possible to supply a minCount, thereby excluding any fields that has a count lower than the
specified minimum count.

2.4. Searching for items (and collections)

51

Vidispine REST APl Documentation, Release 5.x

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<facet count="true" minCount="3">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>13</hits>

<item i1d="VX-248" start="-INF" end="+INF"/>
<item 1d="VX-249" start="-INF" end="+INEF"/>
<item id="VX-250" start="-INF" end="+INEF"/>
<item id="VX-251" start="-INF" end="+INF"/>
<item i1id="VX-252" start="-INF" end="+INEF"/>
<item id="VX-253" start="-INF" end="+INEF"/>
<item i1id="VX-254" start="-INF" end="+INF"/>
<item 1d="VX-255" start="-INF" end="+INF"/>
<item id="VX-256" start="-INEF" end="+INEF"/>
<item id="VX-257" start="-INF" end="+INEF"/>
<item i1d="VX-258" start="-INF" end="+INF"/>
<item id="VX-259" start="-INEF" end="+INE"/>
<item i1id="VX-260" start="-INF" end="+INEF"/>
<facet>

<field>my_category</field>
<count fieldValue="phone">5</count>
<count fieldValue="radio">3</count>
</facet>
</ItemListDocument>

By default, at most 100 facet counts will be returned. By using the maxResults attribute, this behaviour can be

changed.

PUT /item

Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<facet count="true" maxResults="1">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>13</hits>

<item i1d="VX-248" start="-INF" end="+INF"/>
<item id="VX-249" start="-INF" end="+INF"/>
<item id="VX-250" start="-INF" end="+INEF"/>
<item i1d="VX-251" start="-INF" end="+INF"/>
<item id="VX-252" start="-INF" end="+INF"/>
<item id="VX-253" start="-INF" end="+INEF"/>
<item i1d="VX-254" start="-INF" end="+INEF"/>
<item id="VX-255" start="-INF" end="+INF"/>
<item id="VX-256" start="-INF" end="+INEF"/>
<item i1d="VX-257" start="-INF" end="+INF"/>
<item id="VX-258" start="-INF" end="+INF"/>
<item id="VX-259" start="-INF" end="+INEF"/>

52

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<item i1d="VX-260" start="-INF" end="+INF"/>
<facet>
<field>my_category</field>
<count fieldValue="phone">5</count>
</facet>
</ItemListDocument>

Facet exclusion

One or more search filters can be excluded from a facet using * <exclude> tags. Facets can be named to make it
possible to distinguish between different facets, for example when using multiple facets on the same field but with
different excludes.

The facet exclusion is similar to how one can tag and exclude filters in Solr
(https://wiki.apache.org/solr/SimpleFacetParameters#Tagging_and_excluding_Filters).

Example

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<filter name = "tvFilter">
<field>
<name>my_category</name>
<value>tv</value>
</field>
</filter>
<filter name = "priceFilter">
<field>
<name>my_price</name>
<range start="200" end="399"/>
</field>
</filter>

<facet count="true">
<field>my_category</field>
</facet>

<facet name="excludeTv" count="true">
<field>my_category</field>
<exclude>tvFilter</exclude>
<!-- <exclude>tvFilter2</exclude> Multiple exclusions —-—>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item i1d="VX-253" start="-INF" end="+INF"/>
<facet>
<field>my_category</field>
<count fieldValue="tv">1</count>
<count fieldvValue="phone">0</count>
<count fieldValue="radio">0</count>
</facet>
<facet name="excludeTv">
<field>my_category</field>
<count fieldValue="tv">4</count>
<count fieldvValue="phone">1</count>
<count fieldValue="radio">1</count>

2.4. Searching for items (and collections) 53

https://wiki.apache.org/solr/SimpleFacetParameters#Tagging_and_excluding_Filters

Vidispine REST APl Documentation, Release 5.x

</facet>
</ItemListDocument>

2.4.9 Spell checking

Search terms can be checked against a dictionary. This enables “Did you mean...” types of searches. The dictionary
used is built from the search index and updated periodically.

Example

Consider a user is intending to searching for the “original duration” but misspells both words:

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>orignal durraton</text>

<suggestion> <!/-- Enables spell checking ——>
<maximumSuggestions>2</maximumSuggestions> </-- Optional: Specifies the_,
—maximum number of suggestions ——>
<accuracy>O.7</accuracy> <!-- Optional: A value between 0.0 (least accurate)_,
—and 1.0 (most accurate) of how accurate the spell check should be —-—>
</suggestion>

</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<hits>0</hits>

<suggestion>
<term>orignal</term> </-—- A misspelled search term ——>
<!-— A 1list of suggestions, with the most likely suggestion being first ——>

<suggestion>original</suggestion>
<suggestion>ordinal</suggestion>
</suggestion>
<suggestion>
<term>durraton</term>
<suggestion>duration</suggestion>
</suggestion>
</ItemListDocument>

2.4.10 Autocompletion

Text can be autocompleted against the search index.

Example

Assuming the user intends to type “original duration”. The user first starts typing “original”:

PUT /search/autocomplete
Content-Type: application/xml

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>orig</text>
<maximumSuggestions>3</maximumSuggestions>

</AutocompleteRequestDocument>

54 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<suggestion>original</suggestion>
<suggestion>origin</suggestion>
<suggestion>originated</suggestion>

</AutocompleteResponseDocument>

Then the user continues to start typing “duration’:

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>original dur</text>
<maximumSuggestions>3</maximumSuggestions>

</AutocompleteRequestDocument>

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<suggestion>original duration</suggestion>
</AutocompleteResponseDocument>

Autocomplete on metadata fields

You can also autocomplete on specific metadata fields. In order to make the autocompletion case insensitive, the
metadata field should be set as * <index>extend</index>.

Example:

A metadata field foo_bar with config:

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string-exact</type>
<index>extend</index>

</MetadataFieldDocument>

9% ¢

and this filed contains multiple values: “Animal”, “Sky”, “Animal and Sky”, “animal and sky”

An auto-complete request with user input “animal a”:

PUT /search/autocomplete
Content-Type: application/xml

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>foo_bar</field>
<text>animal a</text>

</AutocompleteRequestDocument>

will give result:

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<suggestion>Animal and Sky</suggestion>
<suggestion>animal and sky</suggestion>

</AutocompleteResponseDocument>

Autocomplete within a search

It is also possible to get autocomplete suggestions while searching. The suggestions will then only match against the
search result set.

2.4. Searching for items (and collections) 55

Vidispine REST APl Documentation, Release 5.x

Example

Let’s say you have a large number of assets, all of which are tagged with one or more tags. A user might want to filter
down the result set, so in this example we search for any assets with category “stock_photo”, and at the same time we
request autocomplete suggestions for the tag field matching the string “hi”.

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>ny_category</name>
<value>stock_photo</value>
</field>
<autocomplete>
<field>my_tag</field>
<text>hi</text>
</autocomplete>
</ItemSearchDocument>

The result might then look like:

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>5</hits>

<item id="VX-6934" start="-INF" end="+INF">
<timespan start="-INF" end="+INF"/>

</item>

<item id="VX-3464" start="-INF" end="+INEF">
<timespan start="-INF" end="+INF"/>

</item>

<item id="VX-2658" start="-INF" end="+INEF">
<timespan start="-INF" end="+INF"/>

</item>

<item id="VX-7234" start="-INF" end="+INE">
<timespan start="-INF" end="+INF"/>

</item>

<item id="VX-3723" start="-INF" end="+INEF">
<timespan start="-INF" end="+INF"/>

</item>

<autocomplete>
<field>my_tag</field>
<suggestion>highres</suggestion>
<suggestion>hills</suggestion>
<suggestion>history</suggestion>

</autocomplete>

</ItemListDocument>

2.4.11 Search Boost
New in version 4.16.
It is also possible to boost some field values during a search.

To enable search boosting, either add the boost factor in the search document or as the default boost factor in the
metadata field definition. Also, _score has to be used as the sorting field.

56 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Example

To find items that have the word phoenix in either title_field or description_field. But the matches
intitle_field are more important.

PUT /item
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine" version="2">
<operator operation="OR">
<field>
<name>title_field</name>
<value boost="10">phoenix</value>
</field>
<field>
<name>description_field</name>
<value>phoenix</value>
</field>
</operator>
<sort>
<field> score</field>
<order>descending</order>
</sort>
</ItemSearchDocument>

Alternatively, the boost factor can also be set the the metadata field definition.

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<name>title_field</name>
<type>string</type>
<boost>10.0</boost>

</MetadataFieldDocument>

2.5 Caching

2.5.1 Search result caching

Saved searches

When searching using the PUT (http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6) method, the query
parameter save=true can be used save the query and request parameters for later retrieval. This can be used to
improve performance for queries that are performed frequently, as the saved search endpoint supports conditional
GET using ETag.

The response will then have status 303 See Other (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.3.4) and Location header, from where the search result can be fetched. The
URI from the Location header supports the ETag and If-None-Match headers for GET
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3) requests. GET requests to the location URI
without the Tf-None-Match header with return the search result with it’s ETag, or 404 if the saved search has
been invalidated and removed.

For item or collection search, the saved search will be invalidated and removed if any entity of that type is re-indexed.

Note: The ETags returned from saved search requests are weak ETags; meaning that the “Content-Type” headers and
query parameters won’t affect the value of the ETag.

2.5. Caching 57

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Vidispine REST APl Documentation, Release 5.x

]

PUT /search?save=true
PUT /item?save=true

HTTP/1.1 303 See Other
Location:{loc-uri}

GET {loc-uri}

200

GET {loc-uri}
If-None-Match: W/"7¢c876b7e"

GET {loc-uri} GET {loc-uri}
// Without header / // Without header, for the second time

ETag not changed™_ETag changed

HTTP/1.1 304 Not Modified HTTP/1.1 404 Not Found

Example

An item search request is first made using save=true:

PUT API/item?save=true
Content-Type: application/xml

<?xml version="1.0" encoding="utf-8"?>

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>squirrel</text>

</ItemSearchDocument>

HTTP/1.1 303 See Other
Location: http://localhost:8080/API/item/saved/£8297c9d02083d66731b4438415fd26b?
—type=ITEM

Then, to fetch the query results:

GET http://localhost:8080/API/item/saved/£8297c9d02083d66731b4438415fd26b?type=ITEM

HTTP/1.1 200 OK
Content-Type: application/xml
ETag: W/"50521d364314765d9£672279375939b8"

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<hits>1</hits>
<item i1d="VX-26424" start="-INF" end="+INEF">
<timespan start="-INF" end="+INF"/>
</item>
</ItemListDocument>

58 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

After that, the ETag can be used to perform a conditional GET:

GET http://localhost:8080/API/item/saved/£8297¢9d02083d66731b4438415fd26b?type=ITEM
If-None-Match: W/"50521d364314765d9£672279375939b8"

’HTTP/l.l 304 Not Modified

2.6 Metadata projections

Vidispine supports two kinds of conversion tools for automating integration with other systems.

Projection A metadata projection is a bidirectional XSLT transformation, meant to simplify integration of the
Vidispine system with several third party systems.

Auto-projection The auto-projection is used to interact on metadata changes. For example, a change to one field may
automatically trigger changes to other fields.

2.6.1 Projections
A projection consists of an incoming and an outgoing XSLT transformation.
* The incoming projection transforms information in some format to a format supported by Vidispine.
* The outgoing projection transforms information from Vidispine to a some other format.
When you use projections to transform item metadata then the outgoing projection will transform a Metadatal.istDoc-
ument and the incoming projection must produce a MetadataDocument.
Projection id
Projections are identified by a projection id of the regular expression form: [_A-Za-z] [_A-Za-z0-9] %, maxi-
mum 32 characters. The projection is is case sensitive.
Example

This is an example of valid XSL:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:
—vs="http://xml.vidispine.com/schema/vidispine">

<xsl:template match="/">
<metadata>
<item><xsl:value-of sclect="vs:MetadatalistDocument/vs:item/@id"/></item>
<xsl:for-each select="vs:MetadatalListDocument/vs:item/vs:metadata/vs:timespan/vs:
—~field">
<metadataField>
<name><xsl:value-of select="vs:name"/></name>
<xsl:for—-each select="vs:value">
<value><xsl:value-of seclect="."/></value>
</xsl:for-each>
</metadataField>
</xsl:for-each>
</metadata>
</xsl:template>
</xsl:stylesheet>

2.6. Metadata projections 59

Vidispine REST APl Documentation, Release 5.x

2.6.2 XSLT 2.0

XSL Transformations version 2.0 (http://www.w3.0rg/TR/xslt20/) are supported. Remember to specify the correct
version in the stylesheet.

2.6.3 Job Information

It is possible to access job information in the XSLT. This is done by adding the element
<vs:vsXSLTVersion>2</vs:vsXSLTVersion> (xmlns:vs="http://xml.vidispine.com/schema/vidispine
at the global level of the XSLT. When the xs1tVersion option is set, the actual input to the transformation is no

longer a MetadataListDocument, but an ExportInformationDocument. The new input contains two

element:

"

metadataList The same as the old input to the transformation.

job The current job, as outputted by /API/job/{jobid}?metadata=true.

Example

The following example uses both XSLT v2.0 and the job information:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:
—vs="http://xml.vidispine.com/schema/vidispine">

<vs:vsXSLTVersion>2</vs:vsXSLTVersion>

<xsl:template match="/">

<root>
<job>
<xsl:value-of select="vs:ExportInformationDocument/vs: job/vs: jobId/

Stext ()"/>

</job>
<custom>
<xsl:for-each select="vs:ExportInformationDocument/vs: job/vs:data[vs:
—key='custom']/vs:value/tokenize(.,"',")">
<data>
<xsl:value-of select="."/>
</data>
</xsl:for-each>
</custom>
</root>

</xsl:template>
</xsl:stylesheet>

2.6.4 Auto-projection rules

The auto projection is used to interact on metadata changes. For example, a change to one field may automatically
trigger changes to other fields.

An AutoProjectionRuleDocument contains of four parts: <step>, <description>,<inputFilters> and
<triggers>.

MetadataWrapperDocument

During the projection, a temporary structure called “MetadataWrapperDocument” is created for manipulation.

A MetadataWrapperDocument contains some of the fields below, depending on the values of inputFilters in
AutoProjectionRuleDocument :

60 Chapter 2. Items and Metadata

http://www.w3.org/TR/xslt20/

Vidispine REST API Documentation, Release 5.x

metadata The new incoming item metadata

oldMetadata The old metadata of the item

shapeMetadata The new incoming shape metadata

shape The shape list of the item

bulkyMetadata The new incoming bulky metadata of the item or shape
oldBulkyMetadata | The old bulky metadata of the item

Projection steps

Multiple projection steps can be defined in different <step>, with their execution order, description, and script/XSLT
respectively. Please note that <script> and <xs1t> are used to hold JavaScript and XSLT respectively and each
step can only contain one of them.

Example:

<step>
<order>1</order>
<description>stepl description</description>
<script>...</script>

</step>

<step>
<order>2</order>
<description>step2 description</description>
<xslt>...</xslt>

</step>

Input filters

Input filter defines which information should goes into the MetadataWrapperDocument during the projection. There
are two kinds of filters: inputFilter and bulkyMetadataKeysRegex

Legal values of inputFilter are

oldMetadata Add old metadata of the item into the MetadataWrapperDocument
shapeDocument | Add old shape metadata of the item into the MetadataWrapperDocument

All bulky metadata of the item whose key matches the pattern defined in bulkyMetadataKeysRegex will go into
MetadataWrapperDocument. Multiple filters are allowed.

Example:

<inputFilters>
<inputFilter>oldMetadata</inputFilter>
<inputFilter>shapeDocument</inputFilter>
<bulkyMetadataKeysRegex>. »</bulkyMetadataKeysRegex>
</inputFilters>

Rule triggers

Rule triggers defines what kinds of metadata update triggers this rule. They are:

itemMetadata Rule triggered if there is an item metadata update
shapeMetadata | Rule triggered if there is a shape metadata update
bulkyMetadata | Rule triggered if there is a bulky metadata update

Multiple triggers are allowed.

<triggers>
<trigger>itemMetadata</trigger>

2.6. Metadata projections 61

Vidispine REST APl Documentation, Release 5.x

<trigger>shapeMetadata</trigger>
</triggers>

2.6.5 Auto-projection using JavaScript

A JavaScript projection is created by including the JavaScript in the script element of AutoProjectionRuleDocu-

ment. The script will be interpreted using a JavaScript engine.
A number of global variables are defined for the script to use:
* api
* helper

* wrapper

The api object

Please see The api object.

The helper object

Please see The metadatahelper object. In Auto-projection scripts, it is also available under the name helper.

The wrapper object

The wrapper object represents the MetadataWrapperDocument during the projection. Below are available functions:

wrapper .getMetadata ()
Get the new incoming item metadata.

Returns MetadataType.

wrapper .getOldMetadata ()
Get the old metadata of the item.

Returns MetadataListType.

wrapper .getShapeMetadata ()
Get the new incoming shape metadata.

Returns SimpleMetadataType.

wrapper .getShape ()
Get the shape list of the item.

Returns List<ShapeType>.
wrapper .getBulkyMetadata ()

Get the new incoming bulky metadata of the item/shape.

Returns BulkyMetadataType.

wrapper .getOldBulkyMetadata ()
Get the old bulky metadata of the item.

Returns BulkyMetadataType.

wrapper .getOldBulkyMetadata ()
Get the old bulky metadata of the item.

Returns BulkyMetadataType.

62

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

wrapper .setMetadata (value)
Assign a new metadata to the wrapper document.

Arguments
* value — MetadataType
There are two ways to apply projection results to an item:

1. If the rule is triggered by an item metadata update, one should manipulate the object reference returned by
wrapper.getMetadata () directly. Because Vidispine will take that object as the projection result.

2. If the rule is triggered by a shape metadata update or bulky metadata update, one should use the api object to
update the item metadata:

var metadata = helper.createMetadata();

var xml = helper.metadataToStr (metadata);

var id = wrapper.getTargetId();
var result = api.path("item/" + id + "/metadata") .input (xml, "application/xml") .
—put () ;

2.6.6 Auto-projection using XSLT
A XSLT projection is created by including the XSL script in the xs1 element of AutoProjectionRuleDocument.

The transformation result could either be a MetadataDocument or MetadataWrapperDocument. If the result is a
MetadataWrapperDocument, the value of metadata element will be used as the projection result.

During a shape/bulky metadata update, one need to set up another step using the JavaScript api object to update the
item metadata.

Example:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:
—vs="http://xml.vidispine.com/schema/vidispine">
<xsl:template match="/">
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<xsl:for-each select="vs:MetadataWrapperDocument/vs:metadata/vs:
—timespan/vs:field">
<field>
<name>
<xsl:value-of select="vs:name"/>
</name>
<value><xsl:value-of select="vs:value"/>+projection</value>
</field>
</xsl:for-each>
</timespan>
</MetadataDocument>
</xsl:template>
</xsl:stylesheet>

2.7 Metadata migrations

Vidispine has support for migrating metadata to adhere to a new structure. For example, you might have changed the
group hierarchies in your metadata schema, and want to migrate old items and collections to the new schema. This
is done by posting a migration definition. Vidispine will then automatically go through all the metadata in the system
and migrate it.

2.7. Metadata migrations 63

Vidispine REST APl Documentation, Release 5.x

2.7.1 Migration operations
There are a number of operations available for metadata migrations:
* Move This is used to move a field or a group from one position in the hierarchy to another.

* Rename This can be used to rename fields. Note that the new name must already be defined as a metadata field
in the system, and the data types of the old and new fields must be compatible (e.g. a string field cannot be
renamed to a date field, since it could cause invalid values to be introduced)

* Delete Used to delete a field or a group from a metadata hierarchy.

2.7.2 Migration definition

Migrations are defined using XML (or JSON). Here is an example of a migration containing all of the above operations:

<MetadataSchemaMigrationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<move type="field">
<from>
<group>
<name>Film</name>
<field>
<name>actor</name>
</field>
</group>
</from>
<to>
<group>
<name>Film</name>
<group>
<name>Personnel</name>
</group>
</group>
</to>
</move>
<rename>
<from>
<group>
<name>Film</name>
<field>
<name>internal_title</name>
</field>
</group>
</from>
<to>production_id</to>
</rename>
<delete type="group">
<target>
<group>
<name>Film</name>
<group>
<name>Soundtrack</name>
</group>
</group>
</target>
</delete>
</MetadataSchemaMigrationDocument>

The above migration would perform three operations:

64 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

* A move operation on any actor field that is located in the Timespan > Film group. It would instead be
placed in Timespan > Film > Personnel group.

* Arename operation. It would rename any internal_title field located inthe Timespan > Film group.
It would rename it to production_id.

* A delete operation which would delete any group matching Timespan —-> Film -> Soundtrack.

2.8 Metadata datasets

A metadata dataset is a set of metadata values that have semantic relations between each other. Datasets can be used
to validate metadata documents.

2.8.1 Defining the dataset

A dataset is defined using a RDF (https://www.w3schools.com/xml/xml_rdf.asp) document. Vidispine supports cre-
ating a dataset using either a RDF/XML (https://www.w3.org/TR/rdf-syntax-grammar/) document or a TURTLE
(https://www.w3.org/TR/turtle/) document.

For example, the geographical hierarchy relations of USA, New York, California, Los Angeles and San
Francisco can be defined as follows:

<http://example.com/random/id#>
<http://example.com/country/#>

@prefix r:
@prefix c:

@prefix st: <http://example.com/state/#>
@prefix city: <http://example.com/city/#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix skos: <http://www.w3.0rg/2004/02/skos/core#>
c:usa skos:definition "country"
skos:member r:bidl ;
skos:preflLabel "USA"
r:bidl a rdf :Bag
rdf:_1 st:ny ;
rdf:_2 st:ca
st:ny skos:definition "state"
skos:preflLabel "New York"
st:ca skos:definition "state"
skos:member r:bid2 ;
skos:preflabel "California"
r:bid2 a rdf:Bag
rdf:_1 c:la ;
rdf:_ 2 c:sf
c:la skos:definition "city"
skos:preflLabel "Los Angeles"
c:sf skos:definition "city"
skos:preflLabel "San Francisco"

In the above dataset, five subjects (or resources) have been defined:
Angeles and San Francisco. Each subject has its own id (c:usa, st : ca etc.), and two predicates (or prop-
erties) skos:prefLabel and skos:definition; representing the subject’s “display value” and “hierarchical

USA, New York, California, Los

2.8. Metadata datasets

65

https://www.w3schools.com/xml/xml_rdf.asp
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/

Vidispine REST APl Documentation, Release 5.x

level” respectively. The hierarchical relationships between the subjects are defined by the skos:member and the

RDF container rdf : Bag.

You can also use self-defined vocabularies. The example below uses self-defined hasState and hasCity properties

to represent the geographical relationship:

@prefix c: <http://example.com/country/#>
@prefix st: <http://example.com/state/#>
@prefix city: <http://example.com/city/#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

@prefix skos: <http://www.w3.0rg/2004/02/skos/coret>
c:usa skos:definition '"country"
skos:preflLabel "gsa"
c:hasState st:ca , st:ny
st:ca st:hasCity city:la , city:sf ;
skos:definition '"state"
skos:preflLabel "California"
st:ny skos:definition '"state"
skos:preflLabel "New York"
city:sf skos:definition "city"

skos:preflLabel

city:la skos:definition
skos:preflLabel

"San Francisco"

llcityll
"Los Angeles"

2.8.2 Create the dataset

The dataset above can be used to create a metadata dataset in Vidispine:

PUT /metadata/dataset/mytestmodel

Content-Type: text/turtle

@prefix c: <http://example.com/country/#>

@prefix st:

<http://example.com/state/#>

@prefix city: <http://example.com/city/#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix skos: <http://www.w3.0rg/2004/02/skos/core#>

c:usa skos:definition '"country"
skos:preflLabel "gsa"
c:hasState st:ca , st:ny

st:ca st :hasCity city:la , city:sf ;
skos:definition "state" ;
skos:prefLabel "California"

st:ny skos:definition "state"
skos:prefLabel "New York"

city:sf skos:definition "city"

skos:preflabel

city:la skos:definition

"San Francisco"

"City" ;

66

Chapter 2.

Items and Metadata

Vidispine REST API Documentation, Release 5.x

skos:preflLabel "Los Angeles"

If the display values of a dataset model is changed, make sure to reindex any entities that have metadata set on them
using these fields.

2.8.3 Configure metadata fields

After creating the dataset, the metadata fields needs to be configured accordingly:

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<name>rdf_country</name>
<type>string</type>
<constraint>
<dataset>mytestmodel</dataset>
<levelProperty>skos:definition</levelProperty>
<levelValue>country</levelValue>
<value>skos:preflabel</value>
</constraint>
</MetadataFieldDocument>

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<name>rdf_state</name>
<type>string</type>
<constraint>
<dataset>mytestmodel</dataset>
<levelProperty>skos:definition</levelProperty>
<levelValue>state</levelValue>
<value>skos:preflabel</value>
<parent>rdf_country</parent>
</constraint>
</MetadataFieldDocument>

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<name>rdf_city</name>
<type>string</type>
<constraint>
<dataset>mytestmodel</dataset>
<levelProperty>skos:definition</levelProperty>
<levelValue>city</levelValue>
<value>skos:preflabel</value>
<parent>rdf_state</parent>
</constraint>
</MetadataFieldDocument>

The configuration above defines three metadata fields: rdf_country, rdf_state and rdf_city, whose values
are restricted by the metadata dataset mytestmodel.

* <dataset>: Which dataset the field value should be validated against.

¢ <levelProperty>: Should be the property in the dataset that defines a level value.
e <levelValue>: Which level in the dataset does this metadata field belong to.

e <value>: The display value of the metadata field.

e <parent>: (Optional). The parent field if any. This defines the field hierarchy. Fields in the same hierarchy
will be validated together.

2.8. Metadata datasets 67

Vidispine REST APl Documentation, Release 5.x

e <validationGroup>: (Optional). Containing an ordered, comma separated value, defining which fields
should be validated together, and the hierarchical (validation) order of those fields.

Changed in version 4.17.2: The parent element was added. The validationGroup element was deprecated.

2.8.4 Updating metadata
There are two ways to post metadata documents containing semantically related fields:

1. Using the value directly, like we have always been doing:

<?xml version="1.0" encoding="UTEF-8"?>
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INF">
<field>
<name>rdf_country</name>
<value>USA</value>
</field>
<field>
<name>rdf_state</name>
<value>New York</value>
</field>
</timespan>
</MetadataDocument>

2. Using the corresponding subject id from the dataset:

<?xml version="1.0" encoding="UTF-8"?>
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<field>
<name>rdf_country</name>
<value id="c:usa"/>

<!-- or the full URI -->

<!-- <value id="http://example.com/country#usa"/> ——>
</field>
<field>

<name>rdf_state</name>
<value id="st:ny"/>
</field>
</timespan>
</MetadataDocument>

The resulting value will contain both id and the “display value”:

GET item/ (item-id) /metadata

<field uuid="783a6bcl-7917-4aa4-9d37-0cldd4f6787£f">

<name>rdf_country</name>

<value id="c:usa" uuid="459p3d37-c3al-4ae6-8ad7-ab4a934f3a42">USA</value>
</field>
<field uuid="41ffab92-e984-4a36-b8ed-2aaecdlbe56e6">

<name>rdf_state</name>

<value id="st:ny" uuid="898cb68c-b661-4923-8ded-3e9cb02a200b">New York</value>
</field>

68 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

The includeConstraintValue query parameter can be used to only fetch the “display value” of the specified
fields:

GET item/ (item-id)/metadata?includeConstraintValue=rdf_country

<field uuid="783a6bcl-7917-4aa4-9d37-0c1dd4f6787f">
<name>rdf_country</name>
<value id="c:usa" uuid="459p3d37-c3al-4ae6-8ad7-ab4a934f3a42">USA</value>
</field>
<field uuid="41ffab92-e984-4a36-b8ed-2aaedlbeb6eb6">
<name>rdf_state</name>
<value id="st:ny" uuid="898cb68c-b661-4923-8ded-3e9cb02a200b"/>
</field>

2.8.5 Searching for dataset values
New in version 4.17.3.
Searching for entities with metadata from a dataset can be done via regular search. See Search

For example:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>rdf_state</name>
<value>New York</value>
</field>
</ItemSearchDocument>

Or:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>New York</text>
</ItemSearchDocument>

2.8.6 Validation of metadata values

Vidispine will try to validate the incoming metadata document accordingly to the constraint configured on the metadata
fields. Fields defined in the same hierarchy and that belongs to the same timespan and metadata group will be validated
together.

For example, this is an invalid document because London is not a city in USA according to the metadata dataset:

<?xml version="1.0" encoding="UTF-8"?>
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<field>
<name>rdf_city</name>
<value>London</value>
</field>
<field>
<name>rdf_country</name>
<value>USA</value>
</field>
</timespan>
</MetadataDocument>

2.8. Metadata datasets 69

Vidispine REST APl Documentation, Release 5.x

This is an invalid document because the field values in my_test_group are not correct:

<?xml version="1.0" encoding="UTF-8"?>

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<timespan start="-INEF" end="+INEF">
<field>
<name>rdf_city</name>
<value>Los Angeles</value>
</field>
<field>
<name>rdf_state</name>
<value>California</value>
</field>
<group>
<name>my_test_group</name>
<field>
<name>rdf_city</name>
<value>Los Angeles</value>
</field>
<field>
<name>rdf_state</name>
<value>New York</value>
</field>
</group>
</timespan>
</MetadataDocument>

This is a valid document, because rdf_state?2 belongs to a different hierarchy than rdf_city and rdf_state

belong to. And they all contain valid values:

<?xml version="1.0" encoding="UTF-8"?>

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<timespan start="-INEF" end="+INF">
<field>
<name>rdf_city</name>
<value>Los Angeles</value>
</field>
<field>
<name>rdf_state</name>
<value>California</value>
</field>
<field>
<name>rdf_state2</name>
<value>New York</value>
</field>
</timespan>
</MetadataDocument>

2.8.7 Retrieving allowed values

To get all allowed value of a metadata field:

GET metadata-field/rdf_city/allowed-values

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ConstraintValuelListDocument xmlns="http://xml.vidispine

.com/schema/vidispine">

70

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<value id="city:man">Manchester</value>
<value id="city:nyc">New York City</value>
<value id="city:la">Los Angeles</value>
<value id="city:buf">Buffalo</value>
<value id="city:sf">San Francisco</value>
<value id="city:roc">Rochester</value>
<value id="city:Ilnd">London</value>
</ConstraintValueListDocument>

To find all allowed values:

POST metadata-field/rdf_city/allowed-values

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<MetadataFieldValueConstraintListDocument xmlns="http://xml.vidispine.com/schema/
—vidispine">
<constraint>
<field>rdf_country</field>
<value>USA</value>
<!-- or use the constraint subject id -->
<id>http://example.com/country#usa</id>
</constraint>
<constraint>
<field>rdf_state</field>
<value>New York</wvalue>
</constraint>
</MetadataFieldValueConstraintListDocument>

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ConstraintValuelListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<value id="city:nyc">New York City</value>

</ConstraintValueListDocument>

2.9 Subtitles

Vidispine supports adding subtitles to an item. They can then for example be exported to Final Cut. Subtitles can also
be used with sequences and can be included in the video when a sequence is rendered.

2.9.1 Subtitle metadata fields and groups

To add subtitles to a Vidispine item, the metadata field group st1_subtitle must be used. The group should be
placed within a t imespan corresponding to the in- and out timecodes the subtitles should be displayed. Within this
group, the following fields can be set:

e stl_text. This sets the actual text which should be displayed. Multiple lines are delimited by a line feed
character.

e stl_justification. Determines the justification of multiple lines of text.
left all lines are aligned to left border of text bounding box
center all lines are aligned in center of text bounding box
right all lines are aligned to right border of text bounding box

* st1_xrelative. Horizontal position of base point relative to full video frame.

2.9. Subtitles 4

Vidispine REST APl Documentation, Release 5.x

0.0 left border
1.0 right border
* stl_yrelative. Vertical position of base point relative to full video frame.
0.0 top border
1.0 bottom border
* st1l_horizontalbase. Horizontal position of base point relative to text bounding box.
0.0 (or 1left) base point is left border of bounding box.
0.5 (or center) base point is center of bounding box.
1.0 (or right) base point is right border of of bounding box.
* stl_verticalbase. Vertical position of base point relative to text bounding box.
0.0 (or top) base point is top border of of bounding box.
0.5 (or middle) base point is middle of bounding box.
1.0 (or bottom) base point is bottom border of bounding box.
* stl_sizerelative. Height of font relative to full video frame.
e stl_color. Color of text. Can be standard colors (red) or hexadecimal (#££0000).
* st1_outline. Type of outline.
(none) no outline
bar rectangular outline
stroke fat stroke around text
* stl_outlinecolor. Color of outline.
* stl_outlinesize. Size (margin) of outline.
e st1_font. Font of subtitle.
monospace fixed-width font (default)
sans sans-serif font

serif font with serifs

72 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Example

e stl_justification=left

e stl_xrelative=0.9

e stl_yrelative=0.5

* stl_horizontalbase=right
e stl_verticalbase=top

The subtitle language can be extracted from the .stl file itself or set using jobmetadata, key
subtitlelLanguage; jobmetadata has a higher priority.

Example

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="10€PAL" end="100€25">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>left</value></field>
<field><name>stl_vertical</name><value>6</value></field>
<field><name>stl_text</name><value>some text
actually two lines</value>
—</field>
</group>
</timespan>
</MetadataDocument>

2.9.2 Rendering subtitles in a sequence

If you have a sequence attached to an item in Vidispine the subtitle metadata can be included in the output file. To do
this, you need to use a shape tag where <burnSubtitles>true</burnSubtitles> is setin the <video>
element. Note that overlapping subtitle timespans are not allowed and will cause the render job to fail.

2.9. Subtitles 73

Vidispine REST APl Documentation, Release 5.x

Example

Let’s say we have an item VX-811 which has a sequence attached to it, and the following metadata:

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<timespan start="72140C@PAL" end="72260Q@PAL">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>center</value></field>
<field><name>stl_text</name><value>No, I am your father.</value></field>
</group>
</timespan>
<timespan start="72320C@PAL" end="72490@PAL">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>center</value></field>
<field><name>st1_text</name><value>No... that's not true!
 That's_,
—impossible!</value></field>
</group>
</timespan>

</MetadataDocument>

And we have the following shape-tag called MP4_512_SUB:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<bitrate>96000</bitrate>
</audio>
<video>
<scaling>
<width>512</width>
<height>288</height>
</scaling>
<codec>h264</codec>
<bitrate>2000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<burnSubtitles>true</burnSubtitles>
</video>
</TranscodePresetDocument>

Then a render job is started using:

POST /item/VX-8l1l/sequence/render?tag=MP4_512_SUB

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine"><jobId>VX-1436</jobId>
—»<user>admin</user><started>2013-03-08T13:02:15.654Z</started><status>READY</status>
—<type>CONFORM</type><priority>MEDIUM</priority></JobDocument>

This will render the sequence and include any subtitle metadata as subtitles in the output video.

74 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

2.9.3 SCC support

To export subtitle metadata for an item in SCC format, use the SCC export resource.

GET /item/VX-56/metadata/export/scc

Scenarist_SCC V1.0

00:00:00:00 942c 942c 9420 9420 9470 9470 54e5 £8f4

00:00:10:00 942f 942f

00:00:20:00 942c 942c

2.9.4 TTML support

Subtitles for an item can also be retrieved in TTML format using Export to TTML.

GET /item/{id}/metadata/export/ttml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tt xmlns:ns2="http://www.w3.0org/ns/ttml#styling" xmlns="http://www.w3.org/ns/ttml"_
—xmlns:nsd4="http://www.w3.0rg/ns/ttml#metadata"™ xmlns:ns3="urn:ebu:tt:style" xmlns:
—ns5="http://www.w3.0org/ns/ttmlfparameter" xmlns:ns6="urn:ebu:tt:metadata" ns5:
—frameRate="25" nsS5:cellResolution="50 30" ns2:extent="704px 576px" xml:lang="en">
<head>
<metadata>
<ns6:documentMetadata>
<ns6:documentTargetAspectRatio>4:3</ns6:documentTargetAspectRatio>
<ns6:documentTotalNumberOfSubtitles>11</ns6:documentTotalNumberOfSubtitles>
<ns6:documentMaximumNumberOfDisplayableCharacterInAnyRow>40</ns6:
—documentMaximumNumberOfDisplayableCharacterInAnyRow>
<ns6:documentStartOfProgramme>00:00:00:00</ns6:documentStartOfProgramme>
<ns6:documentCountryOfOrigin>GB</ns6:documentCountryOfOrigin>
<ns6:documentPublisher>Institut fuer Rundfunktechnik </nsé6:
—documentPublisher>
</ns6:documentMetadata>
</metadata>
<styling>
<style xml:id="textCenter" ns2:textAlign="center"/>
<style xml:id="defaultStyle" ns2:fontFamily="monospaceSansSerif" ns2:fontSize=
—"lc 1c" ns2:1lineHeight="normal" ns2:textAlign="center" ns2:color="white" ns2:
—backgroundColor="transparent" ns2:fontStyle="normal" ns2:fontWeight="normal" ns2:
—textDecoration="none"/>
<style xml:id="whiteOnblackDH" ns2:fontSize="1c 2c" ns2:color="white" ns2:
—backgroundColor="black"/>
</styling>
<layout>
<region xml:id="bottom" ns2:origin="10% 10%" ns2:extent="80% 80%" ns2:
—displayAlign="after" ns2:padding="0c" ns2:writingMode="1rtb"/>
<region xml:id="top" ns2:origin="10% 10%" ns2:extent="80% 80%" ns2:displayAlign=
—"before" ns2:padding="0c" ns2:writingMode="1rtb"/>
</layout>
</head>
<body>
<div xml:1id="SGN1" style="defaultStyle">
<p region="top" style="textCenter" begin="00:00:00:00" end="00:00:02:10">

2.9. Subtitles 75

Vidispine REST APl Documentation, Release 5.x

two-line

top
</p>
<p region="top" style="textCenter" begin="00:00:02:14" end="00:00:04:21">

one-line top
</p>
</div>
</body>
</tt>

2.10 Examples

2.10.1 Creating fields/groups, modifying and moving metadata

Let’s say that we have an item that contains a sports game. We want to record the goals that have occurred within the
game. To do this we have the triple (time, team, player), where the time is the real-world time when the goal took
place, the player that scored and the team the player plays for.

Creating the metadata fields

First to create the field for time, we choose the data type “date” since we want it to be indexed, but we will use it as
temporal metadata so it is not applicable to be a sortable field.

PUT /metadata-field/sport_time
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>date</type>
</MetadataFieldDocument>

As for creating the team and the player, we use the same reasoning above, with the exception of that we want a string
instead

PUT /metadata-field/sport_team
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string</type>
</MetadataFieldDocument>

PUT /metadata-field/sport_player
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string</type>
</MetadataFieldDocument>

Creating the metadata field group

With the fields created we now want a way to group these fields together so we create a field group called “goal”.

76 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

’PUT /metadata-field/field-group/goal

Now we simply add the fields, created above, to the group.

’PUT /metadata-field/field-group/goal/sport_time

’PUT /metadata-field/field-group/goal/sport_team

’PUT /metadata-field/field-group/goal/sport_player

Retrieving the group:

’GET /metadata-field/field-group/goal

<MetadataFieldListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field sortable="false">
<name>sport_time</name>
<type>date</type>
</field>
<field sortable="false">
<name>sport_player</name>
<type>string</type>
</field>
<field sortable="false">
<name>sport_team</name>
<type>string</type>
</field>
</MetadataFieldListDocument>

Modifying metadata

Let’s say that the item VX-7632 contains two goals that occurred during a game that matches
the triples (time=2010-09-05T16:20:33Z’, team="Sweden’, player="Pete’) and (time=‘2010-09-05T16:42:05Z2,
team="Germany’, player="Bob’). Within the item the first goal can be seen between the time codes (1200, 1380)
and the second goal between the time codes (2700, 2940).

Each step will contain a diagram, where the dashed red line illustrates the semantics of the request being performed.

Adding the first goal

Adding the first goal without adding the player:

2.10. Examples 77

Vidispine REST APl Documentation, Release 5.x

WE-TE32

[-INF, +INF]

I
I
I I shapeTag
| ariginal
I
I
I
| .
I sport_time
I —_— . — [11{"]._ 133]] 2010-00-05T16:20:332
sport_team
EDHI Sweden

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group mode="add">
<name>goal</name>
<field>
<name>sport_time</name>
<value>2010-09-05T16:20:33%Z</value>
</field>
<field>
<name>sport_team</name>
<value>Sweden</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-7632">
<metadata>
<revision>VX-16295,VX-16296,VX-16299</revision>
<timespan end="1380" start="1200">
<group change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" _
—user="admin" uwuid="1£89d35d-02b6-4871-aal7-62c5ed4992f4">

78 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<name>goal</name>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
—" user="admin" uuid="915b6023-£374-4432-832c-a2c48clefb56">
<name>sport_time</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="cce8£f89%9a-a220-4e53-8734-5831a3a4eb77">2010-09-05T16:
—20:33z2</value>
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
—" user="admin" uuid="d9d9%b21c-171d-402b-878d-cefa5b3£f9727">
<name>sport_team</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="7493df98-be67-4fb6-97fe-a89b9e501207">Sweden</value>
</field>
</group>
</timespan>
<timespan end="+INE" start="-INF">
<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00"
—user="system" uuid="7c5c49f9-c740-4b0a-93e8-81490fb65799">
<name>shapeTag</name>
<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00
<" user="system" uuid="9c2945d5-3480-436e-bfbb-2444e586961d">original</value>
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Adding the second goal

Adding the second goal, accidentally to same timespan as the first goal:

2.10. Examples

79

Vidispine REST APl Documentation, Release 5.x

WE-TB32

[-INF, +INF]
shapeT.
—P m:i“aTE
[1200, 1380]
goal
I
I
I
I
I
I
I
I
I
I
I
I
I
I
b goal

spart_time
2010-0%-05T16:20:33%

3 sport_team
Sweden

spart_time
2010-0%-05T16:42:05%

sport_team

EErmany

. sport_player
Bob

80

Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group mode="add">
<name>goal</name>
<field>
<name>sport_time</name>
<value>2010-09-05T16:42:05%2</value>
</field>
<field>
<name>sport_team</name>
<value>Germany</value>
</field>
<field>
<name>sport_player</name>
<value>Bob</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan end="1380" start="1200">
<group change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00"
—user="admin" uuid="1£89d35d-02b6-4871-aal7-62c5ed4992f4">
<name>goal</name>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
—" user="admin" uuid="915b6023-£374-4432-832c-a2c48clefb56">
<name>sport_time</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="cce8£f89%a-a220-4e53-8734-5831a3a4eb77">2010-09-05T16:
—20:33z2</value>
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
—" user="admin" uuid="d9d9%021c-171d-402b-878d-cefabb3£9727">
<name>sport_team</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="7493df98-be67-4fb6-97fe-a89p9e501207">Sweden</value>
</field>
</group>
<group change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"
—user="admin" uuid="0e9%a54eb-0b90-4ed9-ac68-d2cb5d7abc73">
<name>goal</name>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
<" user="admin" uuid="4e5ffd77-ab59-46fe-9939-47ab61df7523">
<name>sport_team</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.
—715+02:00" user="admin" uuid="2a64f141-b3aa-4686-973c-7c254a0b77cb">Germany</value>
</field>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
—" user="admin" uuid="2444055e-40e0-49b6-8493-0£68df82f01la">
<name>sport_player</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.

—715+02:00" user="admin" uuid="441404a4-882c-458a-af88-b2fad592d71c">Bob</value>

2.10. Examples 81

Vidispine REST APl Documentation, Release 5.x

</field>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
—" user="admin" uuid="01d54bbb-d0le-4c6f-880e-1clcbc4e598e">
<name>sport_time</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.
—715+02:00" user="admin" uuid="71dd57e3-4a39-41ad-b351-78c4bc20ac0b">2010-09-05T16:
—42:0572</value>
</field>
</group>
</timespan>
<timespan end="+INE" start="-INF">
<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00"
—user="system" uuid="7c5c49f9-c740-4b0a-93e8-81490£fb65799">
<name>shapeTag</name>
<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00
<" user="system" uuid="9c2945d5-3480-436e-bfbb-2444e586961d">original</value>
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Modifying the first goal

Adding the missing player to first goal:

82 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

WE-TB32

[-INF, +INF]
I shapeTag
original
[1200, 1380]
goal
goal

spart_time
2010-0%-05T16:20:33%

sport_team

Sweden

sport_player
Biob

spart_time
2010-0%-05T16:42:05%

| sport_team
EErmany
| | sport_player
Bob

2.10. Examples

83

Vidispine REST APl Documentation, Release 5.x

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group uuid="1£89d35d-02b6-4871-aal7-62c5ed4992£4">
<name>goal</name>
<field mode="add">
<name>sport_player</name>
<value>Pete</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-16301,VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan end="1380" start="1200">
<group change="VX-16301" timestamp="2010-09-08T15:41:22.212+02:00"_
—user="admin" uwuid="1£89d35d-02b6-4871-aal7-62c5ed4992f4">
<name>goal</name>
<field change="VX-16301" timestamp="2010-09-08T15:41:22.212+02:00
—" user="admin" uuid="e374df6f-deb5-4d5e-bfea-dlc2aeb6df9aa">
<name>sport_player</name>
<value change="VX-16301" timestamp="2010-09-08T15:41:22.
212+02:00" user="admin" uuid="dbb77bcb-c3e5-4d9%9e-90a6-3114ecald091">Pete</value>
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
—" user="admin" uuid="915b6023-£374-4432-832c-a2c48clefb56">
<name>sport_time</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="cce8£f89%a-a220-4e53-8734-5831a3a4eb77">2010-09-05T16:
—20:33z2</value>
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00
<" user="admin" uuid="d9d9%021c-171d-402b-878d-cefa5b3£f9727">
<name>sport_team</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.
—836+02:00" user="admin" uuid="7493df98-be67-4fb6-97fe-a89b9e501207">Sweden</value>
</field>
</group>
<group change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"
—user="admin" uuid="0e9%a54eb-0b90-4ed9%-ac68-d2cb5d7abc73">
<name>goal</name>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
—" user="admin" uuid="4e5ffd77-ab59-46fe-9939-47ab61df7523">
<name>sport_team</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.
—715+02:00" user="admin" uuid="2a64f141-b3aa-4686-973c-7c254a0b77cb">Germany</value>
</field>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
—" user="admin" uuid="2444055e-40e0-49b6-8493-0£68df82f01la">
<name>sport_player</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.
<715402:00" user="admin" uuid="441404a4-882c-458a-af88-b2fad592d71c">Bob</value>
</field>

84 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00
—" user="admin" uuid="01d54bbb-d0le-4c6f-880e-1clcbc4e598e">
<name>sport_time</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.
—715+02:00" user="admin" uuid="71dd57e3-4a39-41ad-b351-78c4bc20ac0b">2010-09-05T16:
—42:05z2</value>
</field>
</group>
</timespan>
<timespan end="+INEF" start="-INF">
<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00"_,
—user="system" uuid="7c5c49f9-c740-4b0a-93e8-81490fb65799">
<name>shapeTag</name>
<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00
" user="system" uuid="9c2945d5-3480-436e-bfbb-2444e586961d">original</value>
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Moving metadata

Since the second is placed in the wrong timespan it can be corrected by moving it.

2.10. Examples

85

Vidispine REST APl Documentation, Release 5.x

VX-7632
[-INF, +INF]
—
[llﬂl}_,]_3E{I] > Eﬂlﬂj:-;;TEJ:SEZ
sport_team
Sweden

| sport_player
Biob

—— = — [2700, 2940]

spart_time
2010-0%-05T16:42:05%

sport_team

EErmany

. sport_player
Bob

86 Chapter 2. Items and Metadata

Vidispine REST APl Documentation, Release 5.x

PUT /item/VX-7632/metadata/move?start=2700&end=2940&uuid=0e9a54eb-0b90-4ed9-ac68-
—d2cb5d7abe73
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<revision>VX-16301,VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan start="1200" end="1380">
<group uuid="1£89d35d-02b6-4871-aal7-62c5ed4992f4" user="admin" timestamp=
—"2010-09-08T15:41:22.212+02:00" change="VX-16301">
<name>goal</name>
<field uuid="e374df6f-deb5-4d5e-bfea-dlc2aebdf9aa" user="admin" timestamp=
—"2010-09-08T15:41:22.212+02:00" change="VX-16301">
<name>sport_player</name>
<value uuid="dbb77bcb-c3e5-4d9%e-90a6-3114ecald091" user="admin"_
—timestamp="2010-09-08T15:41:22.212+02:00" change="VX-16301">Pete</value>
</field>
<field uuid="915b6023-£374-4432-832c-a2c48clefbb56" user="admin" timestamp=
—"2010-09-08T15:36:01.836+02:00" change="VX-16299">
<name>sport_time</name>
<value uuid="cce8f89a-a220-4e53-8734-5831a3ad4eb77" user="admin"_
—timestamp="2010-09-08T15:36:01.836+02:00" change="VX-16299">2010-09-05T16:20:332</
—value>
</field>
<field uuid="d9d9%21c-171d-402b-878d-cefabb3£9727" user="admin" timestamp=
—"2010-09-08T15:36:01.836+02:00" change="VX-16299">
<name>sport_team</name>
<value uuid="7493df98-be67-4fb6-97fe-a8909e501207" user="admin"
—timestamp="2010-09-08T15:36:01.836+02:00" change="VX-16299">Sweden</value>
</field>
</group>
</timespan>
<timespan start="-INEF" end="+INF">
<field uuid="7c5c49£9-c740-4b0a-93e8-81490fb65799" user="system" timestamp=
—"2010-09-08T11:00:15.833+02:00" change="VX-16295">
<name>shapeTag</name>
<value uuid="9c2945d5-3480-436e-bfbb-2444e586961d" user="system"
—timestamp="2010-09-08T11:00:15.833+02:00" change="VX-16295">original</value>
</field>
</timespan>
<timespan start="2700" end="2940">
<group uuid="0e9%a54eb-0b90-4ed9%-ac68-d2cb5d7abc73" user="admin" timestamp=
—"2010-09-08T15:38:28.715+02:00" change="VX-16300">
<name>goal</name>
<field uuid="4e5ffd77-ab59-46fe-9939-47ab61df7523" user="admin" timestamp=
—"2010-09-08T15:38:28.715+02:00" change="VX-16300">
<name>sport_team</name>
<value uuid="2a64f141-b3aa-4686-973c-7c254a0b77cb" user="admin"_
—timestamp="2010-09-08T15:38:28.715+02:00" change="VX-16300">Germany</value>
</field>
<field uuid="2444055e-40e0-4906-8493-0£68df82f01a" user="admin" timestamp=
—"2010-09-08T15:38:28.715+02:00" change="VX-16300">
<name>sport_player</name>
<value uuid="441404a4-882c-458a-af88-b2fad592d71c" user="admin"_
—timestamp="2010-09-08T15:38:28.715+02:00" change="VX-16300">Bob</value>
</field>
<field uuid="01d54bbb-d0le-4c6f-880e-1clcbc4e598e" user="admin" timestamp=
—"2010-09-08T15:38:28.715+02:00" change="VX-16300">
<name>sport_time</name>

2.10. Examples 87

Vidispine REST APl Documentation, Release 5.x

<value uuid="71dd57e3-4a39-41lad-b351-78c4bc20acO0b" user="admin"_
—timestamp="2010-09-08T15:38:28.715+02:00" change="VX-16300">2010-09-05T16:42:052</
—value>
</field>
</group>
</timespan>
</MetadataDocument>

The metadata has now been corrected and contain the information that we wanted to record.

2.10.2 Defining a metadata schema

Based on the types in the metadata example we can specify a schema. There is no restriction in creating a Metadata
Schema with different field-groups that contain same metadata-fields.

PUT /metadata-schema
Content-Type: application/xml

<MetadataSchemaDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<!-- The organization is optional and can exist [0,n] outside of groups ——>
<group name="organization" min="0" max="-1">
<!-- An organization has one or more employees —-—>
<group name="employee" min="1" max="-1" reference="false"/>
<!-— An organization has zero or more projects —-—>
<group name="project" min="0" max="-1" reference="false"/>
<!-— An organization has exactly one name ——>
<field name="example_name" min="1" max="1" reference="false"/>
</group>
<!-- A project cannot exist outside of a group —-->
<group name="project" min="0" max="0">
<!-- A project has at least one employee, which has to be referenced ——>
<group name="employee" min="1" max="-1" reference="true"/>
<!-- A project has exactly one name —-->
<field name="example_name" min="1" max="1" reference="false"/>
<!-- A project has exactly one location element (it still can have more than,,
—one value) ——>
<field name="example_location" min="1" max="1" reference="false"/>
</group>
<!-— An employee cannot exist outside of a group ——>
<group name="employee" min="0" max="0">
<!-— An employee has exactly one name —->
<field name="example_name" min="1" max="1" reference="false"/>
<!-- An employee might have a title —-->
<field name="example_title" min="0" max="1" reference="false"/>
</group>

</MetadataSchemaDocument>

Retrieving the metadata of a new item:

GET /item/VX-1ll/metadata

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-11">
<metadata>
<revision>VX-47</revision>

88 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

<timespan end="+INF" start="-INF">
<field change="VX-47" timestamp="2010-12-17T13:15:04.495+01:00" user="system"
—uuid="0f4eclal0-8a5e-4b96-958a-blea7516e38a">
<name>shapeTag</name>
<value change="VX-47" timestamp="2010-12-17T13:15:04.495+01:00" user="system

" uuid="99%a47lee-18fd-4440-a218-80a3df40b471">original</value>
</field>

</timespan>
</metadata>
</item>
</MetadatalistDocument>

Validating it:

’PUT /item/VX-11l/metadata/validate ‘

’200 OK

Adding the organization in the example:

PUT /item/VX-11l/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<group>
<name>organization</name>
<field>
<name>example_name</name>
<value>My organization</value>
</field>
<group>
<name>employee</name>
<field>
<name>example_name</name>
<value>Bob</value>
</field>
<field>
<name>example_title</name>
<value>CEO</value>
</field>
</group>
<group uuid="A">
<name>employee</name>
<field>
<name>example_name</name>
<value>Pete</value>
</field>
<field>
<name>example_title</name>
<value>Director</value>
</field>
</group>
<group uuid="B">
<name>enmployee</name>
<field>
<name>example_name</name>
<value>Andrew</value>

2.10. Examples 89

Vidispine REST APl Documentation, Release 5.x

</field>
<field>
<name>example_title</name>
<value>Editor</value>
</field>
</group>
<group>
<name>project</name>
<field>
<name>example_name</name>
<value>Movie project</value>
</field>
<field>
<name>example_location</name>
<value>London</value>
<value>Berlin</value>
</field>
<group>
<name>enmployee</name>
<reference>A</reference>
</group>
<group>
<name>employee</name>
<reference>B</reference>
</group>
</group>
</group>
</timespan>
</MetadataDocument>

200 OK

Adding an employee without a name to the organization:

PUT /item/VX-11l/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<group>
<name>organization</name>
<group mode="add">
<name>employee</name>
<field>
<name>example_title</name>
<value>Developer</value>
</field>
</group>
</group>
</timespan>
</MetadataDocument>

HTTP/1.1 400 An invalid parameter was entered
Context: metadata—-schema
Reason: Too few of member example_name in group organization: 0 vs 1

920 Chapter 2. Items and Metadata

Vidispine REST API Documentation, Release 5.x

Alternate way of creating a schema

A schema can also be built when creating and modifying metadata field groups. To create the schema above, the
following three requests can be made.

PUT /metadata-field/field-group/employee
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="0"/>
<field>
<name>example_name</name>
<schema min="1" max="1" reference="false"/>
</field>
<field>
<name>example_title</name>
<schema min="0" max="1" reference="false"/>
</field>
</MetadataFieldGroupDocument>

PUT /metadata-field/field-group/project
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="0"/>
<field>
<name>example_name</name>
<schema min="1" max="1" reference="false"/>
</field>
<field>
<name>example_location</name>
<schema min="1" max="1" reference="false"/>

</field>
<group>

<name>employee</name>

<schema min="1" max="-1" reference="true"/>
</group>

</MetadataFieldGroupDocument>

PUT /metadata-field/field-group/organization
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="-1"/>
<field>
<name>example_name</name>
<schema min="1" max="1" reference="false"/>
</field>
<group>
<name>employee</name>
<schema min="1" max="-1" reference="false"/>
</group>
<group>
<name>pro ject</name>
<schema min="0" max="-1" reference="false"/>
</group>
</MetadataFieldGroupDocument>

2.10. Examples 91

Vidispine REST APl Documentation, Release 5.x

92 Chapter 2. Items and Metadata

CHAPTER
THREE

COLLECTIONS AND LIBRARIES

This chapter describes collections and libraries, two concepts in Vidispine used to group items. The main differences
between collections and libraries are:

¢ Collections can have metadata attached to them, libraries cannot.
* Collections can contain sub collections and can also contain libraries. Libraries can only contain items.

* Libraries can have dynamic content. You can attach an item search document to a library, and have it automati-
cally update its content based on which items match the query.

Both can be assigned access controls and storage rules that apply to the items, and for collections, libraries and sub
collections in them.

3.1 Collections

Collections are generic storage containers and can for example be used as:

* A sort of folder structure, where files are mapped as items and sub folders are mapped as sub collections in the
hierarchy.

* A simple container for a number of items and collections.
* A representation of a Non Linear Editor (NLE) “bin”.

* A representation of an entity in your domain.

3.1.1 Creating collections

Create a collection using POST /collection. Once created you can add items, libraries or other collections to it,
add metadata or grant access to other users by adding access controls.

POST /collection?name=Pending%20review

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<loc>http://localhost:8080/API/collection/VX-16</loc>
<id>vx-16</id>
<name>Pending review</name>

</CollectionDocument>

3.1.2 Searching for collections

You can search for collections in the same way as you can search for items.

93

Vidispine REST APl Documentation, Release 5.x

PUT /collection
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>Pending</text>
</ItemSearchDocument>

<CollectionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<hits>1</hits>
<collection>
<id>Vx-16</id>
<name>Pending review</name>
</collection>
</CollectionListDocument>

Searching for collections with specific items

Use an item query to find collections that contain specific items. For example, to find collections with a title contain-
ing ‘Peach’ or collections with items with similar titles:

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>title</name>
<value>Peach</value>
</field>
<item>
<field>
<name>title</name>
<value>Peach</value>
</field>
</item>
</operator>
</ItemSearchDocument>

See Joins on collection search.

Searching in a collection

You can also search for items in a collections using PUT /collection/ (collection—id)/item. An alter-
native way of finding only items that exist in a collection is to query on the ___collection transient metadata field.
This is also more flexible as it allows you to find items in multiple collections, or using it as part of a more complex

query.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>__collection</name>
<value>VX-16</value>
</field>
<operator operation="NOT">
<field>
<name>__ collection</name>
<value>VX-1</value>
</field>
</operator>
</ItemSearchDocument>

94 Chapter 3. Collections and Libraries

Vidispine REST API Documentation, Release 5.x

The difference between searching for items in a collection using PUT /collection/ (collection-id) /item
and PUT /item with a query on __collection is the default ordering, which is by collection order and by
creation date, respectively.

There is also the __ancestor_collection transient metadata field that allows you to find items that exist in a
collection or in a sub collection of that collection.
Listing collections that contain an item

If you want to see which collections contain an item, you can either look at the item metadata and look at the ”
__collection ” field. There will be one entry for each collection that includes the item. This, however, does not
take into account which collections a user has read access to. In order to see which collections contain an item with
read permissions honored you can use GET /item/ (item-id) /collection

3.1.3 Ordering collections

The entities in the collection are ordered, and new entities will be added at the end of the list. Use POST
/collection/ (collection-id) /order to change the order. The order will be enforced in requests to GET
/collection/ (collection-id) and GET /collection/ (collection-id) /item for example.

To get the same ordering as in GET /item you will have to explicitly sort on the creation date, the created field,
which is the default.

3.1.4 Update collection content

Items, libraries and collections can be added, removed and reordered in a collection in a single call. Use GET
/collection/ (collection—id) to getthe content of the collection. Then rearrange, add and/or remove con-
tent and use PUT /collection/ (collection-id) to update the collection.

3.1.5 Partial update collection content

If you only want to specify each change (add, move or remove entity) in a collection you can use PUT
/collection/ (collection—id) and specifying a mode in each content element.

PUT /collection/VX-2000
Content-Type: application/xml

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<loc>http://localhost:8080/API/collection/VX-2000/</loc>
<id>Vvx-2000</id>

<!-- Set the name to "New name" -->
<name>New name</name>

<!-— Move item VX-3 after VX-2 —-->

<content mode="move" after="VX-2">
<id>VX-3</id>
<uri>http://localhost:8080/API/item/VX-3</uri>

<type>item</type>
<metadata/>
</content>
<!-— Add the items from library VX+40 to after item VX-2 ——>
<content mode="add" addItems="true" after="VX-2">
<id>VX*40</id>
<uri>http://localhost:8080/API/library/VX*«40</uri>
<type>library</type>
<metadata/>

3.1. Collections 95

Vidispine REST APl Documentation, Release 5.x

</content>

<!-— Add the library VXx44 before VX33 ——->

<content mode="add" before="VX%x33">
<id>VXx44</id>
<uri>http://localhost:8080/API/library/VX+44</uri>
<type>library</type>
<metadata/>

</content>

<!-- Remove the collection VX-500 —->

<content mode="remove">
<id>Vx-500</id>
<uri>http://localhost:8080/API/collection/VX-500</uri>
<type>collection</type>
<metadata/>
</content>
</CollectionDocument>

3.1.6 Multiple relations between same entities
New in version 5.5.

In version 5.5, multiple relations between the same pair of collection and item, sub-collection or library are allowed.
Each relation has a unique id (UUID), which can be used to reference relations instead of the entity id shown above.

In addition, a new mode is added: “update”, which only updates a relation, and not move it.

An example. Assume the following collection:

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VX-937</id>
<name>coll</name>
<content>
<id>VxX-718</id>
<type>item</type>
<reference>bbd5adbb-4826-49cc-8f26-b87a266f09db</reference>
<metadata>
<field>
<key>myfield</key>
<value>somedata</value>
</field>
</metadata>
</content>
<content>
<id>Vvx-721</id>
<type>item</type>
<reference>9cflalac-7c7b-49%9a7-acf9-33fce9%948elaa</reference>
<metadata/>
</content>
<content>
<id>VxX-718</id>
<type>item</type>
<reference>80ecaad68-bcb7-4811-adal0-2falc366547c</reference>
<metadata/>
</content>
</CollectionDocument>

The following update:

96 Chapter 3. Collections and Libraries

Vidispine REST API Documentation, Release 5.x

* Move the last VX-718 to the top.
* Removes the first VX-718.
¢ Adds two new VX-719 (at the end of the list).

¢ Sets metadata on VX-721.

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<content mode="move" before="bbd5adbb-4826-49cc-8f26-b87a266£09db" />
<reference>80caad68-bcb7-4811-adal0-2falc366547c</reference>
</content>
<content mode="remove">
<reference>bbd5adbb-4826-49cc—-8f26-b87a266f09db</reference>
</content>
<content mode="add">
<id>VX-719</id>
<type>item</type>
</content>
<content mode="add">
<id>VX-719</id>
<type>item</type>
</content>
<content mode="update">
<reference>9cflalac-7c7b-49%9a7-acf9-33fce948elaa</reference>
<metadata>
<field>
<key>myfield</key>
<value>newdata</value>
</field>
</metadata>
</content>
</CollectionDocument>

3.1.7 Metadata on collection to entity relations

Each collection to entity relation can contain metadata which is stored in fields with a key and a value and can be
modified when updating the collection.

GET /collection/VX-3866

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<loc>http://localhost:8080/API/collection/VX-3866/</loc>
<id>VX-3866</id>
<content>
<id>VxX-5480</id>
<uri>http://localhost:8080/API/item/VX-5480</uri>
<type>item</type>
<metadata/>
</content>
<content>
<id>VxXx1810</id>
<uri>http://localhost:8080/API/library/VX*1810</uri>
<type>library</type>
<metadata/>
</content>
</CollectionDocument>

3.1. Collections 97

Vidispine REST APl Documentation, Release 5.x

PUT /collection/VX-3866
Content-Type: application/xml

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<loc>http://localhost:8080/API/collection/VX-3866/</loc>
<id>VX-3866</id>
<content>
<id>VX-5480</id>
<uri>http://localhost:8080/API/item/VX-5480</uri>
<type>item</type>
<metadata>
<field>
<key>AddedBy</key>
<value>Jane Doe</value>
</field>
</metadata>
</content>
<content>
<id>VXx1810</id>
<uri>http://localhost:8080/API/library/VX+*1810</uri>
<type>library</type>
<metadata>
<field>
<key>AddedBy</key>
<value>John Doe</value>
</field>
</metadata>
</content>
</CollectionDocument>

3.1.8 Collections as folders

As mentioned in the introduction, collections could be used to represent folders, as a way for your users to organize
their items.

This could be an entirely logical grouping, or correspond to the actual directory structure of the items files on the file
system. To achieve the later, you can mark the collections as folder mapped collections. See Folder mapped collections
in the API reference on how to set this up.

3.1.9 Representative thumbnails

A new metadata field has been added to the collection metadata: representativeItems. This field can contain
a list of items that will represent this collection. Vidispine will automatically get the representative thumbnails of each
item and add a transient metadata field on the collection metadata.

For example:

<field>
<name>representativeltems</name>
<value>VX-653</value>
<value>VX-657</value>
<value>VX-658</value>
<value>VX-659</value>

</field>

will add those values to the metadata:

98 Chapter 3. Collections and Libraries

Vidispine REST API Documentation, Release 5.x

<field>
<name>__representativeThumbnails</name>
<value>/API/thumbnail/VX-2/VX-653;version=0/2100@NTSC30</value>
<value>/API/thumbnail/VX-2/VX-657;version=0/0@24000</value>
<value>/API/thumbnail/VX-2/VX-658;version=0/3300297@30000</value>
<value>/API/thumbnail/VX-2/VX-659;version=0/500QPAL</value>
</field>
<field>
<name>__representativeThumbnailsNoAuth</name>
<value>/APInoauth/thumbnail /VX-2/VX-653;version=0/2100@NTSC30?
—hash=9dfb29f8159532b1d3al19462e64c03f</value>
<value>/APInoauth/thumbnail /VX-2/VX-657;version=0/0@24000?
—hash=bb75e99dd2f1£961810c85fab99cd75f</value>
<value>/APInoauth/thumbnail /VX-2/VX-658;version=0/3300297@300007?
—~hash=696fa412368ccclOacllfc30018ea8062</value>
<value>/APInoauth/thumbnail/VX-2/VX-659;version=0/500@PAL?
—hash=0737888e52cb4e66041ba7dle58b22be</value>
</field>

In combination with Stitching images, this can be used to easily create and cache a collection thumbnail without having
to track the item update notifications.

3.2 Libraries

Whereas collections are more of a generic container for entities, the strength of libraries lies in the ability to have the
library content dynamically updated based on a query.

Use libraries to for example:
* Manage the current search performed by a user.
 To represent saved searches created by your users.

» To implement dynamic storage rules or access control restrictions based on the metadata of items.

3.2.1 Creating libraries

When searching for items you can create a library containing the items matching the query by specifying
result=library. If used together with aut oRefresh=t rue you can create a “saved search”. When accessing
the library later, its content will return

PUT /item?updateMode=REPLACE&autoRefresh=TRUE&result=library HTTP/1.1
Accept: application/xml
Content-type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>project_priority</name>
<value>urgent</value>
</field>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<library>Vxx19</library>
<item>VX-13</item>
<item>VX-1l4</item>

3.2. Libraries 99

Vidispine REST APl Documentation, Release 5.x

<item>VX-71</item>
</ItemListDocument>

Check the library settings to find out how a library was created, or why a library contains a specific set of items, for
example when using self-refreshing libraries.

GET /library/VX+67/settings

<LibrarySettingsDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VX*67</id>
<username>admin</username>
<updateMode>REPLACE</updateMode>
<autoRefresh>true</autoRefresh>
<query>
<field>
<name>originalWidth</name>
<range>
<value>640</value>
<value>720</value>
</range>
</field>
</query>
</LibrarySettingsDocument>

Libraries without a query

Libraries can also be created using POST /l1ibrary. You will need to specify the items that the library should
contain, but this can also be changed afterwards.

POST /library HTTP/1.1
Content-Type: application/xml

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-250"/>
<item id="VX-1000"/>

</ItemListDocument>

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>Vxx48</uri>
</URIListDocument>

Check the library settings and you will see that it does not specify a query, in comparison to libraries created when
searching.

3.2.2 Automatic deletion

Libraries will be automatically deleted after having not being accessed for a period of 24 hours. There are some
exception to this rule. If any of the following conditions apply, the library will not be automatically deleted:

e The library is part of a collection
* The library has a storage rule set

* The library has a site rule set

The library has autoRefresh=true

e The library has an updateFrequencey set.

100 Chapter 3. Collections and Libraries

Vidispine REST API Documentation, Release 5.x

3.2.3 Self-refreshing libraries

Libraries can be set to keep their contents up to date with the queries in two ways (see the table below). The two
different methods can either be used together or separately. Neither of these modes will have an affect on transient
libraries, as they will always be kept up to date.

Name Values Description
autoRefresh trueor false | If true, items will be tracked as their metadata is modified.
(default)

updateFrequepasitive integer If set, the library will be rebuilt periodically. The integer describes the
minimum time, in minutes, between updates.

Having aut oRe fresh set means that metadata changes will have an almost immediate effect on libraries. But it has
the drawback that libraries using variables, such as a timestamp search containing ranges with the “NOW” variable,
will not be updated unless a user changes its metadata. To remedy this libraries can be updated periodically. From a
performance point of view though, it is more efficient to check if an item belongs to a library then to refresh an entire
library — so period updates should be done with care.

Caution: Queries involving variables

Using variables in queries, e.g. the use of the word “NOW” when searching timestamped metadata, is not reliable
for libraries unless they are either set as TRANSIENT or they are set to be updated periodically.

Update modes
MERGE In this mode any items that matches query will be added to the library without removing any existing items.
REPLACE Unlike MERGE, this mode will also remove items that no longer matches the query.

TRANSIENT This mode has the same semantics as REPLACE, with some important differences. It only contains
items on a logical basis, so instead of simply retrieving its items it needs to perform a search every time its
contents is being requested. This leads to a faster creation time than REPLACE, but slower lookup and cannot
be used to restrict item access.

Example

Creating a library that contains items created within the last 5 days.

PUT /item?autoRefresh=false&updateFrequency=60&updateMode=REPLACE&result=1library
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>created</name>
<range>
<value>NOW-5DAYS</value>
<value>NOW</value>
</range>
</field>
</ItemSearchDocument>

Restrictions
At most 999 self-refreshing libraries can exist in the system simultaneously.

If using the default Solr configuration, it is a good idea to set the useLucene property to speed up matching of
self-refreshing libraries.

3.2. Libraries 101

Vidispine REST APl Documentation, Release 5.x

3.2.4 Restricting access to items

Setting access controls on a library will cascade down on the items. This means that libraries can be used to batch
update access controls on a set of items. Note that this does not work on libraries with updateMode TRANSIENT.

3.2.5 Storage rules on libraries

You can set storage rules on libraries. All items belonging to the library will then be affected by the rule. Note that
this does not work on libraries with updateMode TRANSIENT. Having a storage rule on a library will also prevent
it from being automatically deleted.

102 Chapter 3. Collections and Libraries

CHAPTER
FOUR

SHAPES, COMPONENTS AND TRANSCODING

4.1 Iltem shapes

A shape is a physical representation of an item. Each shape is made up out of one or more components that correspond
to content of a file.

4.1.1 Shapes

Each item will typically have at least a single shape, the original shape, along with one or more alternate representa-
tions of the asset.

¢ For video, this can be a low-resolution version, a web version and a mobile version. Another example is if you
have multiple versions of the same video, but each with different audio or text tracks. Those versions would
then be separate shapes.

* For text this could be the word processor document format, a PDF or a plain text version.

You will find that the information extracted and presented for video and audio files is richer than what’s provided for
other type of files, such as PDFs or zip files. For the former information about the container and video- and audio
streams is provided, while the latter is typically presented as a shape with a binary component.

To distinguish between different shapes you can use tags. These are described in the Shape tags and presets section.

Importing shapes

Vidispine will create an original shape when an item is first imported. To import additional shapes to an item, for
example files created by an external transcoder, then that can be done by creating a SHAPE_ IMPORT job.

A shape import job will:
 Transfer content to a Vidispine supervised storage.
* Media check the imported file.
* Create a new shape and add it to the item.

Use the item shape resource to import new shapes. An image could for example be imported to and item, and tagged
with the large—-jpg tag, using:

POST /item/VX-12/shape?uri=file:///srv/ftp/the-doctor. jpg&tag=large-jpg

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169826</jobId>
<user>admin</user>
<started>2014-07-03T18:21:09.79572</started>
<status>READY</status>
<type>SHAPE_IMPORT</type>

103

Vidispine REST APl Documentation, Release 5.x

<priority>MEDIUM</priority>
</JobDocument >

4.1.2 Essence versions

If you have assets that change over time, and wish to track all of those versions, then you can use an item to represent
the asset and then import each update to the asset as a new essence version on the item.

Vidispine will return the shapes and thumbnails for the latest essence version by default, but you can of course select
to have older versions returned as well.

Shapes
Version 0

Shapes
Version 1

Shapes
Version 2

Creating a new essence version

New essence versions are created using ESSENCE_VERSION jobs. See Essence versions for the different ways of
starting such jobs. For example, creating a new essence version for an item by providing the location of the new asset.

POST /item/VX-37/shape/essence?uri=file:///home/lisa/render-1. jpg

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-39</jobId>
<user>lisa</user>
<started>2014-07-03T06:52:45.11472</started>
<status>READY</status>
<type>ESSENCE_VERSION</type>
<priority>MEDIUM</priority>

</JobDocument>

This new image will then show up as the original shape of the item, and will be used as the input on any future
transcodes. By viewing the shape we can see that this shape belongs to a new essence version. Note that the essence
version numbers are zero-based.

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" id="VX-37">
<shape>
<id>vx-38</id>
<essenceVersion>1</essenceVersion>
<tag>original</tag>
<mimeType>image/ jpeg</mimeType>
<containerComponent>. . .</containerComponent>
<videoComponent>. . .</videoComponent>
<metadata>
<field>
<key>originalFilename</key>
<value>render-1. jpg</value>
</field>
</metadata>
</shape>
</ItemDocument>

104 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

We can also see that there’s a new essence version by retrieving the essence versions for the items.

GET /item/VX-37/shape/version

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>http://localhost:8080/API/item/VX-37/shape/version/1l</uri>
<uri>http://localhost:8080/API/item/VX-37/shape/version/0</uri>
</URIListDocument>

4.1.3 Transcoding

An item can be transcoded either when it is imported or afterwards by using the item transcode resource. When
transcoding an already imported item a TRANSCODE job will be used. A transcode job will:

» Create any new entities, such as the new files that are about to appear.
* Create a transcoding task and submits it to a transcoder.
¢ Media check the new files and update the item.

The difference between transcoding while and after importing is that the former can be done in parallel to any transfers
that may be needed, while the latter is a serial task as the input files, the files from the original shape of the item, should
already exist on a storage managed by Vidispine.

Starting transcode jobs

The transcodes to perform are identified using shape tags that contains the transcode preset that the defines the desired
outputs.

Use the t ag parameter when starting an import job to transcode an item while it is being imported. See Transcoding
for more information on the subject.

POST /import?uri=file:///srv/incoming/media.mov&tag=lowres, android

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169819</jobId>
<user>admin</user>
<started>2014-07-03T07:20:14.2207</started>
<status>READY</status>
<type>PLACEHOLDER_IMPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

To transcode an existing item, use the franscode resource with the t ag parameter as above.

POST /item/VX-191440/transcode?tag=lowres, android

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169820</jobId>
<user>admin</user>
<started>2014-07-03T07:22:47.90072</started>
<status>READY</status>
<type>TRANSCODE</type>
<priority>MEDIUM</priority>

</JobDocument >

4.1. Item shapes 105

Vidispine REST APl Documentation, Release 5.x

Transcode progress

The progress of the transcode is available from the job, both as progress on the transcode step and as key-value
metadata on the job.

<task 1id="237">
<step>200</step>
<attempts>0</attempts>
<status>STARTED_ASYNCHRONOUS</status>
<timestamp>2014-07-03T07:27:58.0302</timestamp>
<description>Transcoding.</description>
<progress total="100" unit="percent">75.0</progress>
<subStep>
<timestamp>2014-07-03T07:22:48.051Z</timestamp>
<description>Starting transcode</description>
</subStep>
</task>

And from the job metadata, where you will find the t ranscode x job metadata, that also includes the estimated time
left and the progress expressed in the media time.

<data>
<key>transcodeDurations</key>
<value>8000000@1000000</value>

</data>

<data>
<key>transcodeMediaTimes</key>
<value>2880000@48000</value>

</data>

<data>
<key>transcodeProgress</key>
<value>75.0</value>

</data>

<data>
<key>transcodeEstimatedTimelLeft</key>
<value>6.2072</value>

</data>

<data>
<key>transcodeWallTime</key>
<value>18.6216</value>

</data>

4.1.4 Thumbnailing

Thumbnails are by default created if an item is transcoded while being imported. To create thumbnails or posters for
an item, use a THUMBNAIL job. A thumbnail job will:

¢ Create a thumbnailing task and submit it to a transcoder.
» Update the representative thumbnail of the item.

The location of the representative thumbnail is stored in the item metadata, so if you wish to present a number of
items to a user, along with a thumbnail of each item, then it is recommended that you read the thumbnails from
the representativeThumbnail metadata field instead of fetching all thumbnails for all items. There is also
the representativeThumbnailNoAuth field that provides the thumbnail at a location that does not require
authentication.

<timespan start="-INF" end="+INEF">
<field uuid="b578cfe7-cf8b-476£-866£f-7027e0dbab542" user="system" timestamp="2014-07-

A 1

Eepaway 2 1 AW n 1 n AC Do An
—UOoILUT? . T . L T U PMAYAY] CITarrge= -~ LOoaJ U >

106 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<name>representativeThumbnail</name>
<value uuid="al59d13c-4a70-4e6a-83fd-36a7b0ef25af" user="system" timestamp="2014-
—07-03T09:23:24.172+02:00" change="VX-1345770">/API/thumbnail/VX-2/VX-191440;
—version=0/0Q@PAL</value>
</field>
<field uuid="12c6553d-7473-42bf-95b4-875afdlcac74" user="system" timestamp="2014-07-
—03T10:46:40.728+02:00" change="VX-1345771">
<name>representativeThumbnailNoAuth</name>
<value uuid="9b70a04c-8755-426b-9446-3£4857cb87el" user="system" timestamp="2014-
—07-03T10:46:40.728+02:00" change="VX-1345771">/APInocauth/thumbnail /VX-2/VX-191440;
—version=0/0@PAL?hash=b5424e9878940a333b6230817ae88eef</value>
</field>
</timespan>

Starting a thumbnail job

Use the thumbnail resource to create thumbnail jobs for an item.

POST /item/VX-191440/thumbnail?createThumbnails=true

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169821</jobId>
<user>admin</user>
<started>2014-07-03T08:46:09.9607</started>
<status>READY</status>
<type>THUMBNAIL</type>
<priority>MEDIUM</priority>

</JobDocument >

The thumbnails will be uploaded to the item as the job progresses. You can find them by inspecting the item. For
example:

GET /item/VX-191440?content=thumbnail

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" 1d="VX-191440">
<thumbnails>
<uri>http://localhost:8080/API/thumbnail /VX-2/VX-191440;version=0/0@PAL</uri>
</thumbnails>
</ItemDocument>

If you wish to see which thumbnails were created by a specific thumbnail job, then you can check the thumbnails
job metadata.

<data>

<key>thumbnails</key>

<value>{" [TC:0Q@PAL]":"http://localhost:8080/API/thumbnail/VX-2/VX-191440;version=0/
—0Q@25"}</value>
</data>

4.1.5 Analyzing media

Shapes can be analyzed to detect for example detect cropping and silence. See Shape analysis.

4.1. Item shapes 107

Vidispine REST APl Documentation, Release 5.x

4.2 Shape tags and presets

Shapes can be tagged in order to retrieve their file contents easily using Retrieving item information. The system adds
certain tags to shapes automatically during certain operations, such as an import job. Predefined tags can be seen in
the table below.

Tag Description
original | The first shape that was created for the item.

While shape tags serve as a “name tag” for shapes, they also contain the recipe for how new shape instances with the
shape tag should be constructed, or transcoded, from other shapes. This is defined using a transcode preset that defines
the format, codec, bitrate etc of the shapes.

4.2.1 Transcode presets

The transcode preset specifies the output format, codec and encoding settings that should be used when transcoding.
You can either

» Use one of the built in preset templates.
* Use one of the presets defined in this documentation.

* Define your own preset. See Transcode preset elements for more information.

Preset templates

Vidispine comes with some preset templates built in. These can be added to the system by making a PUT request to
APIinit/preset—-templates. These template tags have names that begin with double underscore and cannot
be overwritten (Also, shape tags with names starting with double underscore cannot be added to the system).

4.2.2 Scripting transcode presets

Transcode presets can be made dynamic by assigning a JavaScript to them. Made available to the script will be the
shape that is going to be transcoded as well as the unmodified preset. The shape can be used as input to determine for
example the original resolution of the media. For output the preset can be modified before it is sent to the transcoder.
An overview is given in the table below.

Mode | Identifier XML Type Java Type

input jobMetadata | - java.util.Map<String, String>

input metadata MetadataType com.vidispine.generated.MetadataType

input shape ShapeType com.vidispine.generated.ShapeType

out- preset TranscodePreset- com.vidispine.generated.TranscodePresetTypég
put Type

The given data types are generated from the XML schema and belong to the package
com.vidispine.generated. They follow JavaBean standard, i.e. getters and setters for their attributes.

Caution: Lists of integer

When adding integers of a list, simply using integer literals will not work. Instead java.lang.Integer must
be used, for example: 1ist.add (new java.lang.Integer(5));

Tip: When writing the script, or after you have written one, write tests that verifies it for a range of shapes using the
script test resource.

108 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

Examples

A preset that only produces two audio channels in the output

First we create a preset with only the formats and codecs set.

PUT /shape-tag/h264
Content-Type: application/xml

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
</audio>
<video>
<codec>h264</codec>
</video>
</TranscodePresetDocument>

200 OK

Then we add the script

PUT /shape-tag/h264/script
Content-Type: application/Jjavascript

// Retrieve the channel count: <ShapeDocument><audioComponent><channelCount>
var channelCount = shape.getAudioComponent () .get (0) .getChannelCount () ;

// If we have more than two channels, limit it to the first two:

if (channelCount > 2) {
// Adding elements to <TranscodePresetDocument><audio><channel>
preset.getAudio () .getChannel () .add (new java.lang.Integer (0));
preset.getAudio () .getChannel () .add (new java.lang.Integer(l));

200 OK

The result preset will then look like this if the input shape has more than two audio channels:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<channel>0</channel>
<channel>1</channel>
</audio>
<video>
<codec>h264</codec>
</video>
</TranscodePresetDocument>

Scaling the output depending on the input

Using the same shape-tag as in the example above we can use the following script.

4.2. Shape tags and presets 109

Vidispine REST APl Documentation, Release 5.x

// Retrieve the width and height of the input
var width = shape.getVideoComponent () .get (0) .getResolution () .getWidth();
var height shape.getVideoComponent () .get (0) .getResolution () .getHeight ();

if (width == 720 && height == 608) {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType () ;
preset.getVideo () .setScaling(scaling);

// Crop 32 pixels from the top
scaling.setTop(32);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType();
targetDar.setHorizontal (4);

targetDar.setVertical (3);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (480);
scaling.setHeight (360);
} else if (height > 700) {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType();
preset.getVideo () .setScaling(scaling);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType () ;
targetDar.setHorizontal (16);

targetDar.setVertical (9);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (640);
scaling.setHeight (360);
} else {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType();
preset.getVideo () .setScaling(scaling);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType () ;
targetDar.setHorizontal (4);

targetDar.setVertical (3);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (320);
scaling.setHeight (240);

4.2.3 Transcode preset elements

This section highlights some of the settings and possibilities that are often useful when authoring a transcode preset.

110 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

Setting a preferred source tag

It is possible to specify that another file than the original should be used as the source file when transcoding. This is
done using the preferredSourceTag element.

Burning in the timecode in the video

Vidispine can burn the timecode into the output video. To enable this, set the burnTimecode element to true within
the video element.

Customizing the timecode

The following settings can be added as key-value pairs in the transcode preset:

* bitc_font. Font to use.
monospace fixed-width font (default)
sans sans-serif font
serif font with serifs

* bitc_size. Height of font in pixels. Defaults to 15th of the video height.

* bitc_sizeRel. Height of font relative to full video frame.

¢ bitc_xRel. Position relative to width of video. Default is 0. 5 (middle).

* bitc_yRel. Position relative to height of video. Default is 0. 9 (bottom).

* bitc_horizontalbase. Horizontal position of base point relative to text bounding box.
0.0 (or 1eft) base point is left border of bounding box.
0.5 (or center) base point is center of bounding box.
1.0 (or right) base point is right border of of bounding box.

* bitc_verticalbase. Vertical position of base point relative to text bounding box.
0.0 (or top) base point is top border of of bounding box.
0.5 (or middle) base point is middle of bounding box.
1.0 (or bottom) base point is bottom border of bounding box.

* bitc_r,bitc_g,bitc_b, bitc_a. RGB+alpha of text. Defaults to opaque white.

* bitc_outlineR,bitc_outlineG, bitc_outlineB, bitc_outlineR. RGB+alpha of surrounding
block. Defaults to opaque black.

* bitc_outline. Type of outline. Default is bar.

* bitc_outlinesize. Size (margin) of outline.

Setting a maximum duration of a chunk in QuickTime files

It is possible to specify a maximum duration for chunks in QuickTime files (MOV/MP4/3GPP). To set the duration
add the maxChunkDuration element to the TranscodePresetType.

Example: setting the maximum chunk duration to 2 seconds

4.2. Shape tags and presets 111

Vidispine REST APl Documentation, Release 5.x

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<maxChunkDuration>
<samples>50</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</maxChunkDuration>
<audio>
<codec>aac</codec>
<bitrate>320000</bitrate>
</audio>
<video>
<codec>h264</codec>
<bitrate>500000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<resolution>
<width>512</width>
<height>288</height>
</resolution>
</video>
</TranscodePresetDocument>

Mixing audio channels

It is possible to define advanced mappings between input and output audio channels. This is done using the mix
element.

Example: mixing 5.1 audio into stereo

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<bitrate>128000</bitrate>
<mix>

<input
<input
<input
</mix>
<mix>
<input
<input
<input
</mix>
</audio>
<video>
<scaling>

channel="0"
channel="2"
channel="4"

channel="1"
channel="2"
channel="5"

<width>512</width>
<height>288</height>

</scaling>

<codec>h264</codec>

stream="1"
stream="1"
stream="1"

stream="1"
stream="1"
stream="1"

gain="1.
gain="0.
gain="1.

gain="1.
gain="0.
gain="1.

O"/>
5u/>
O"/>

O"/>
5v|/>
O"/>

112

Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<bitrate>256000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
</video>
</TranscodePresetDocument>

The value of the st ream attribute can be deduced from the input shape. The gain attribute is expressed linearly, i.e.
a value of 1.0 means a gain of 0 dB. Also, since the number of input channels will probably vary with different inputs,
this functionality is best utilized in conjunction with the JavaScript functionality described below.

The mix element can also be used to insert silent audio channels in the output.

Example: adding two silent audio channels in output

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<bitrate>128000</bitrate>
<mix silence="true"/>
<mix silence="true"/>
</audio>
<video>
<scaling>
<width>512</width>
<height>288</height>
</scaling>
<codec>h264</codec>
<bitrate>256000</bitrate>
<framerate>
<numerator>1</numerator>
<denominator>25</denominator>
</framerate>
</video>
</TranscodePresetDocument>

Splitting audio channels to mono files

It is possible to split audio channels into separate mono audio files. And they can be renamed according to their
channel ids .

Example: split specific channels

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<format>wav</format>

<audio>
<codec>pcm_sl6le</codec>
<channel>0</channel>
<channel>3</channel>
<channel>5</channel>
<monoFile>true</monoFile>

</audio>

<video>
<noVideo>true</noVideo>

4.2. Shape tags and presets 113

Vidispine REST APl Documentation, Release 5.x

</video>
</TranscodePresetDocument>

Example: split all channels

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>wav</format>
<audio>
<codec>pcm_sl6le</codec>
<monoFile>true</monoFile>
<allChannel>true</allChannel>
</audio>
<video>
<noVideo>true</noVideo>
</video>
</TranscodePresetDocument>

Splitting audio channels to different output files
It is possible to split audio channels into files that contain more than one channels. And they can be renamed according

to their channel ids.

Example

This preset below will produce three files:
1. A WAV file containing 1 audio stream with 2 channels.
2. A MOV file containing 2 audio streams, each stream has one channel.

3. A MP4 file containing only the video.

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<output>
<format>wav</format>
<codec>pcm_s24le</codec>
<channel>0</channel>
<channel>1</channel>
</output>
<output>
<format>mov</format>
<codec>aac</codec>
<bitrate>320000</bitrate>
<channel>2</channel>
<channel>3</channel>
<stream>1</stream>
<stream>1</stream>
</output>
</audio>
<video>
<codec>h264</codec>
<bitrate>1000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>

114 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

</framerate>
<resolution>
<width>512</width>
<height>288</height>
</resolution>
</video>
</TranscodePresetDocument>

Specifying multiple audio tracks with different audio codecs in output

It is possible to output multiple audio tracks, with different audio codecs, using the audioTrack ele-
ment in the preset. The AudioTrackTranscodePresetType has the channel and mix elements
from the AudioTranscodePresetType. However, there is no stream element, since adding multiple
AudioTrackTranscodePresetType gives the same behaviour.

If you add a script to your preset you can access the audioTrack list with: preset.getAudioTrack (). This
is useful for doing advanced channel mappings and mixdown depending on the input(s).

Example: two audio tracks, one with AC-3 and one with AAC

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audioTrack>
<codec>ac3</codec>
<bitrate>384000</bitrate>
</audioTrack>
<audioTrack>
<codec>aac</codec>
<bitrate>96000</bitrate>
</audioTrack>
</TranscodePresetDocument>

Example: two audio tracks, one with AC-3 and one with a mixdown to stereo AAC

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audioTrack>
<codec>ac3</codec>
<bitrate>384000</bitrate>
</audioTrack>
<audioTrack>
<codec>aac</codec>
<bitrate>96000</bitrate>
<mix>
<input channel="0" gain="1.0"/>
<input channel="2" gain="0.5"/>
<input channel="4" gain="1.0"/>
</mix>
<mix>
<input channel="1" gain="1.0"/>
<input channel="2" gain="0.5"/>
<input channel="5" gain="1.0"/>
</mix>

4.2. Shape tags and presets 115

Vidispine REST APl Documentation, Release 5.x

</audioTrack>
</TranscodePresetDocument>

Example: two audio tracks, one with AC-3 and one with AAC, picking some channels

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audioTrack>
<codec>ac3</codec>
<bitrate>384000</bitrate>
<channel>0</channel>
<channel>1</channel>
</audioTrack>
<audioTrack>
<codec>aac</codec>
<bitrate>96000</bitrate>
<channel>2</channel>
<channel>3</channel>
</audioTrack>
</TranscodePresetDocument>

Specifying audio channel layout
New in version 5.6.

It is possible to specify the channel layout by adding a <channelLayoutName> or <channelLayout>

Note: Currently not supported by the nablet_aac codec

<channelLayout> is a binary representation of the channel layout.
<channelLayoutName> accepts an layout name.
The name can be:
* an usual channel layout (mono, stereo, 4.0, quad, 5.0, 5.0(side), 5.1, 5.1(side), 7.1, 7.1(wide), downmix)

« the name of a single channel (FL, FR, FC, LFE, BL, BR, FLC, FRC, BC, SL, SR, TC, TFL, TFC, TFR, TBL,
TBC, TBR, DL, DR)

» a multiple of the above separated with ‘+ or ‘I, for example: “stereo+FC” or “FL+FR+FC”

Example: 5.1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<audio>
<channelLayout>63</channelLayout>

</audio>
</TranscodePresetDocument>

or

116 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<audio>
<channelLayoutName>"5.1"</channelLayoutName>

</audio>
</TranscodePresetDocument>

Image overlays

One can overlay images on the output at specific positions and intervals by using the overlay element. Note that
the image is overlaid as is and will not be scaled in any way, meaning that you may want to overlay different images
depending on the output resolution. Specifying an overlay interval in an image preset is not supported. Only PNG
overlays are supported.

Multiple overlays are supported.

Example: overlaying a logo

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<overlay>
<uri>http://example.com/logo.png</uri>
<x>10</x>
<y>30</y>

</overlay>
</TranscodePresetDocument>

Text overlays

In addition to image overlays, test overlays can also be added. The XML syntax is somewhat different from the image
overlay syntax, see TextOverlayType in XML Schema for details.

Example: overlaying text

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<textOverlay>
<text xRel="0.1" yRel="0.9" horizontalBase="left" align="left" verticalBase=
—"bottom" sizeRel="0.05">
<line>Happy</line>
<line>birthday!</line>
</text>
</textOverlay>
<textOverlay>
<text xRel="0.9" yRel="0.9" horizontalBase="right" align="right"
verticalBase="bottom" sizeRel="0.02" r="0" g="0" b="0" language="ar">
<line>أج م ل الأمني¢&
—#1575; ت ِ بالمزيد م¢&
—#1606; السعادة وال &
—#1607; ن ا ء ! </line>
</text>
</textOverlay>
</TranscodePresetDocument>

4.2. Shape tags and presets 117

Vidispine REST APl Documentation, Release 5.x

Thumbnails at specific interval

By adding the element <thumbnailPeriod> to the preset, the interval of the the thumbnails can be customized.
The default interval is 10 seconds. Example, for one thumbnail per second:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<thumbnailPeriod>
<samples>1</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>1</denominator>
</timeBase>
</thumbnailPeriod>

</TranscodePresetDocument>

Thumbnails at scene changes

By adding the element <thumbnailPlugin>scenechange</thumbnailPlugin> to the preset, the fixed
thumbnail interval is replaced by an algorithm that extracts thumbnail at scene changes in the version.

Since 4.14, you can combine this element with <thumbnailPeriod> to specify the maximum interval between
thumbnails. The example below will create a thumbnail at every scene change, but never more than 20 seconds apart:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<thumbnailPeriod>
<samples>1</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>1</denominator>
</timeBase>
</thumbnailPeriod>
<thumbnailPlugin>scenechange</thumbnailPlugin>

</TranscodePresetDocument>

MPEG-DASH representation presets
New in version 5.4.
When creating presets for MPEG-DASH representations, the format should be set as mpd-representation.

Video representations should have noAudio and audio representations should have novideo.

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<name>__dash_1080p</name>
<format>mpd-representation</format>
<audio>
<noAudio>true</noAudio>
</audio>
<video>

</video>

118 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<metadata/>
</TranscodePresetDocument>

Deinterlacing video
By adding the setting deinterlacer with value advanced the video will be deinterlaced.
The deinterlacer takes some other settings:
* deinterlacer_mode controls the function of the deinterlacer and takes the following values:

— 0 - Output one frame for each frame (ex. 25i -> 25p).

1 - Output one frame for each field (ex. 25i -> 50p).

2 - Similar as 0, but it skips the spatial interlacing check.
— 3 - Similar to 1, but it skips the spatial interlacing check.

As default the mode is selected automatic to avoid frame duplication / drops. If the output framerate is less than
50% higher than the input framerate mode 0 is used, if higher 1 is used.

* deinterlacer_parity The picture field parity assumed for the input interlaced video. It accepts one of
the following values:

— 0, tff - Assume the top field is first.
— 1, bff - Assume the bottom field is first.
— -1, auto - Enable automatic detection of field parity.

The default value is —1 (auto). If the interlacing is unknown or the decoder does not export this information, top
field first will be assumed.

* deint Specify which frames to deinterlace. Accepts one of the following values:
— 0, all - Deinterlace all frames.
— 1, interlaced - Only deinterlace frames marked as interlaced.

The default value is 0 (all).

Example:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<video>

<setting>
<key>deinterlacer</key>
<value>advanced</value>

</setting>

<setting>
<key>deinterlacer_parity</key>
<value>1</value>

</setting>

<setting>
<key>deinterlacer_mode</key>
<value>1l</value>

</setting>

</video>

4.2. Shape tags and presets 119

Vidispine REST APl Documentation, Release 5.x

<metadata/>
</TranscodePresetDocument>

scaling / cropping / rotating video
Used to set cropping and scaling parameters to the transcoder.

By default, the transcoder will attempt to maintain the display aspect ratio (DAR) of the cropped input. Use targetDAR
to specify a different DAR to maintain.

The transcoder will typically try to adjust the pixel aspect ratio (PAR) so that the cropped picture ends up with the
correct DAR. This minimizes the amount of processing required. Use pixelAspectRatio to set the PAR explicitly, in
which case either width or height will be adjusted to maintain DAR. Use width and height to scale in those dimensions.
If only one of them is set and PAR is set, the other one will be adjusted so the result matches the target DAR. If both
are set and and PAR is set, the transcoder will take them as is.

Setting neither width nor height while PAR is set results in undefined behavior.

The transcoder will always double-check the resulting dimensions and PAR against the desired DAR. If there’s a
mismatch, the job will fail. If you want to force the transcoder to accept your settings, set targetDAR manually to the
resulting DAR.

* top, bottom, left, right is used to specify cropping of the image, negative values will pad the picture
with padColor.

* rotate - specifies how the image should be rotated, supported values are:
— right - rotate the image -90 degrees
— left - rotate the image 90 degrees
— upsidedown - rotate the image 180 degrees

— autorotate - rotate the image based on video metadata

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<video>

<scaling>
<width>1000</width>
<height>2000</height>
<top>-40</top>
<bottom>-50</bottom>
<left>-60</left>
<right>-70</right>
<padColor>#c0c0Oc0</padColor>
<rotate>right</rotate>
<targetDAR>
<horizontal>1000</horizontal>
<vertical>2000</vertical>
</targetDAR>
</scaling>
</video>
<metadata/>
</TranscodePresetDocument>

120 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

4.2.4 Custom settings

Some codecs support fine-grained custom settings. These settings are specified by adding setting element inside
the video or audio element, or by adding a muxerSetting.

Common settings for video and image

thumbnailformat

By default, video thumbnails are JPEG and image thumbnails and PNG.

This can be changed with thumbnailformat. Valid values are jpeg and png.

Video-only settings

sceneChangeThreshold

Can be used to control GOP structure based on scene changes for mpeg2video. By default, GOPs are adjusted
according to detected scene changes. Set to a very high number (1000000000) to disable scene change detection in
order to get equal-sized GOPs.

noTimeCodeTrack

If true, do not write time code track. Primarily used for MP4 and MOV containers.

Image-only settings

colorspace

Sets the color space to specified value. Valid values are CIELab, CMY, CMYK, Gray, HCL, HCLp, HSB, HSI, HSL,
HSV, HWB, Lab, LCH, LCHab, LCHuv, LMS, Log, Luv, OHTA, Rec601Luma, Rec601YCbCr, Rec709Luma,
Rec709YCbCr, RGB, scRGB, sRGB, Transparent, XYZ, YCbCr, YDbDr, YCC, YIQ, YPbPr, YUV.

In addition, colorspace can be set as demuxerSetting as well. This works for PDF and PS files, and will cause

PDF/PS parsing to generate result in the correct color space already when reading the file.

profile

Sets a profile. Profiles must be installed on transcoder node (/usr/share/color/icc).
The transcoder now comes preinstalled with the most common profiles.

A special profile is added, detect—xmp. The profile will read the profile from XMP metadata and use that profile.
An example, that will read the XMP profile and then set SRGB:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<setting>
<key>profile</key>
<value>detect—-xmp</value>

</setting>

<setting>
<key>profile</key>
<value>sRGB</value>

</setting>

</TranscodePresetDocument>

4.2. Shape tags and presets 121

Vidispine REST APl Documentation, Release 5.x

scaling algorithm

New in version 21.3.
It is possible to select which scaling algoritm that should be used when scaling the video.
Accepted values:

* SWS_FAST_BILINEAR - Bilinear scaling with some short cuts to give higher performance.

* SWS_BILINEAR - Bilinear scaling, uses a 2x2 environment of a pixel and then takes the average of these pixels
to interpolate the new value.

* SWS_BICUBIC - Bicubic scaling, uses a 4x4 environment of a pixel, weighing the innermost pixels higher, and
then takes the average to interpolate the new value.

e SWS_X - FFmpeg experimental algorithm.

* SWS_POINT - Fastest, uses closest point, gives a pixelated result when upscaling, might give ok result for down
scaling

* SWS_ARERA - Uses a mapping of source and destination pixels, averaging the source pixels with regards to the
fraction of destination pixels that are covered.

* SWS_BICUBLIN - Uses bicubic scaling for luma values, and bilinear for croma values.

* SWS_GAUSS - Gaussian scaling, usually used for computer vision, not very useful for video.

* SWS_SINC - Uses higher-order polynomials and are therefore harder to compute than bicubic interpolation.

* SWS_LANCZOS - Resampling involves a sinc filter as well. It is more computationally expensive.

* SWS_SPLICE - Use higher-order polynomials and are therefore harder to compute than bicubic interpolation.
Changed in version 21.3.

The default value is SWS_BICUBIC, in older version SWS_FAST BILINEAR was used.

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<setting>
<key>scaling_mode</key>
<value>SWS_BICUBIC</value>
</setting>
</TranscodePresetDocument>

strip

If t rue, strip profile info. If false, do not strip profile.

density

Set the density (resolution) of the image. The format is xRes["x" yRes] WHITESPACE ("dpi" |
"dpcm"). If only one value is set, the same resolution is used for x and y. By specifying dpi or dpcm, reso-
lution can explicitly be set to mean pixels per inch or pixels per centimeter, respectively.

sharpen

If t rue, sharpens the image. May produce better results after scaling.

122 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

alpha extraction

New in version 5.0.
Accepted values:
* keep_alpha - The alpha value is kept and the color and luminance information is discarded.
* discard_alpha - The alpha information is discarded and the color and luminance information is kept.

Normally, if you have a source video with an alpha layer and transcode it to a format that doesn’t support alpha, the
alpha information is taken into account when calculating the color and luminance of the output video. By using one
of the above values, you can filter out the alpha or color and luminance components of the pixels.

Muxer settings

streamOrder

Controls in which order streams are numbered in the output. Comma separated list of audio, video, subtitle.

Demuxer settings

extract closed captions

It is possible to extract EIA-608(also known as “line 21 captions”) from source file and store it in item metadata by
specifying extract_closed_captions =true in demuxerSetting.

From version 5.7, it is possible to extract all caption tracks, both EIA-608 and CEA-708, by specifying
extract_closed_captions = mcc in demuxerSetting. The caption metadata vill contain a new field
stl_service that shows what service it belongs to, CC1 or CC3 for EIA-608 and S1 to S64 for CEA-708.

Example: preset with extract_closed_captions=true

PUT /shape-tag/extract_CC
Content-Type: application/xml

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
</audio>
<video>
<codec>h264</codec>
</video>
<demuxerSetting>
<key>extract_closed_captions</key>
<value>true</value>
</demuxerSetting>
</TranscodePresetDocument>

’200 OK

Example: transcode using previously defined preset

’PUT item/VX-82/transcode?tag=extract_CC

4.2. Shape tags and presets 123

Vidispine REST APl Documentation, Release 5.x

200 OK

When the job is finished item metadata will contain extracted closed caption Subtitles if the extraction was successful.

Sequence render color settings
New in version 5.4.

A normal transcode operations only operates in YUV color space, and does not change the YUV values. However, a
sequence rendering operation takes place in RGB color space, and gives the user more options with regards to output
color space. There are four settings, added as video setting key-values pairs.

Note: Default values are unknown/unspecified. If you are unsure, use bt 709.

Color matrix

Key: colorMatrix
Auvailable values:

* gbr

* bt709

* unknown

* reserved

e fcc

* bt470bg

* smptel70m

* smpte240m

* ycgco

* bt2020nc

* bt2020c

* smpte2085

* chroma—-derived-nc

* chroma-derived-c

e ictcp

Color transfer function

Key: colorTransferFunction
Available values:

* reserved

* bt709

* unknown

* reserved

124 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

bt470m
bt470bg
smptel70m
smpte240m
linear
logl00
log31le
iec61966-2-4
btl36le
iec61966-2-1
bt2020-10
bt2020-12
smpte2084
smpted28
arib-std-b67

Color primaries

Key: colorPrimaries

Available values:

reserved
bt709
unknown
reserved
bt470m
bt470bg
smptel70m
smpte240m
film
bt2020
smpted28
smpted 31
smpted32
ebu3213

4.2. Shape tags and presets

125

Vidispine REST APl Documentation, Release 5.x

RGB sample bit resolution

While the conversion between YUV and RGB is lossless and reversible in theory, round-off errors may occur. By
setting the internal RGB sample width to 16, these errors are eliminated.

Key: renderQuality
Auvailable values:

¢ 8 (default)

e 16

4.3 Common presets

It is not always straightforward to construct a transcode preset that result in output with the desired format. Here are
some guidelines for some of the most common formats.

4.3.1 H.264

The codec element should be set to h264. The default profile is Baseline. This can be overridden using the preset
element. The following values are accepted:

* baseline
e ipod
* main
* high

There are also AVC-Intra specific profiles, see below.

Example

An MP4 using the Main profile:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>mp3</codec>
<framerate>
<numerator>1l</numerator>
<denominator>44100</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1280</width>
<height>720</height>
</scaling>
<codec>h264</codec>
<bitrate>3000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>

126 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<preset>main</preset>
</video>
</TranscodePresetDocument>

New in version 5.0.

Depending on your license key Vidispine will use the H.264 encoder library from either MainConcept or Nablet. If
your license allows for both, the Nablet version will be picked when using the 7264 codec tag. You can override this
by using the vendor specific codec tags: nablet_h264 and mc_h264.

4.3.2 AVC-Intra

To produce AVC-Intra output, the preset element should be set to intra50 or intral00 depending on desired
output. Also add a setting of codecTagString to further specify the variant of AVC-Intra. The possible values are:

* ai5p - 50M 720p24/p30/p60
* ai5q - 50M 720p25/pS0

* ai56 - 50M 1080i60

* ai55-50M 1080i50

* ai53 - 50M 1080p24/p30

* ai52 - 50M 1080p25

* ailp - 100M 720p24/p30/p60
* ailg- 100M 720p25/pS0

* ail6 - 100M 1080i60

* ail5 - 100M 1080i50

* ail3 - 100M 1080p24/p30

* ail2 - 100M 1080p25

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>h264</codec>
<bitrate>100000000</bitrate>
<framerate>
<numerator>1</numerator>

4.3. Common presets 127

Vidispine REST APl Documentation, Release 5.x

<denominator>25</denominator>
</framerate>
<gopSize>0</gopSize>
<pixelFormat>yuv422p</pixelFormat>
<preset>intral00</preset>
<profile>CBR</profile>
<setting>

<key>codecTagString</key>

<value>ail2</value>
</setting>

</video>
</TranscodePresetDocument>

4.3.3 ProRes

Set the codec element to prores. The preset element must also be set to one of the following values:

PR422HQ — ProRes HQ
PR422 — ProRes 422
PR422LT — ProRes LT
PR422Proxy — ProRes Proxy
PR4444 —ProRes 4444
PR4444XQ — ProRes 4444 XQ

The ProRes encoder will use the field-order information that Vidispine can read from the input file. In the case that
Vidispine has the wrong information, you can override it by adding a setting key-value to the video element in
the TranscodePresetDocument. The key should be interlace_flag and value one of:

* progressive
e top_first

* bottom_first

Example

ProRes 422 LT:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>prores</codec>

128 Chapter 4

. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<bitrate>85000000</bitrate>

<preset>PR422LT</preset>

<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>

</framerate>

</video>
</TranscodePresetDocument>

With interlace_flagsetto top_first:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1l</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>prores</codec>
<bitrate>85000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<preset>PR4221T</preset>
<setting>
<key>interlace_flag</key>
<value>top_first</value>
</setting>
</video>
</TranscodePresetDocument>

4.3.4 XDCAM IMX-30/40/50

The preset element must be set to imx30, imx40 or imx50 depending on desired output. Also, a setting must be

added specifying codecTagString. Accepted values are:
* mx5p — IMX-50
e mx4p — IMX-40
* mx3p — IMX-30

NTSC

To get NTSC output, there are a few changes that need to be made.

¢ The framerate should have a numerator of 1001 and a denominator of 30000.

4.3. Common presets

Vidispine REST APl Documentation, Release 5.x

Example

IMX-50:

¢ The scaling element should have a height of 518.

* Exchange the last letter of the codedTagString from p to n (i.e. mx5p to mx5n)

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mxf_dl10</format>
<audio>

<codec>pcm_s24le</codec>
<channel>0</channel>
<channel>1</channel>
<channel>2</channel>
<channel>3</channel>
<stream>4</stream>

</audio>
<video>

<scaling>
<width>720</width>
<height>608</height>
<top>-32</top>
</scaling>
<codec>mpeg2video</codec>
<bitrate>50000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<displayWidth>
<numerator>720</numerator>
<denominator>1</denominator>
</displayWidth>
<displayHeight>
<numerator>576</numerator>
<denominator>1</denominator>
</displayHeight>
<displayXOffset>
<numerator>0</numerator>
<denominator>1</denominator>
</displayXOffset>
<displayYOffset>
<numerator>32</numerator>
<denominator>1</denominator>
</displayYOffset>
<containerSAR>
<horizontal>64</horizontal>
<vertical>45</vertical>
</containerSAR>
<gopSize>0</gopSize>
<pixelFormat>yuv422p</pixelFormat>
<preset>imx50</preset>
<setting>
<key>codecTagString</key>
<value>mx5p</value>
</setting>

</video>
</TranscodePresetDocument>

130

Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

4.3.5 XDCAM HD422

The format element must be set to mxf_ffmpeqg. There are also some settings that must be added, see example
below. The codecTagString setting should be one of the following values:

xd54 — 720p24 50Mb/s CBR
xd55 —720p25 50Mb/s CBR
xd59 — 720p60 50Mb/s CBR
xd5a — 720p50 50Mb/s CBR
xd5b — 1080160 50Mb/s CBR
xd5c — 1080150 50Mb/s CBR
xd5d — 1080p24 50Mb/s CBR
xd5e — 1080p25 50Mb/s CBR
xd5f — 1080p30 50Mb/s CBR

NTSC

To get NTSC output, set the framerate to have a numerator of 1001 and a denominator of 30000, and use

the appropriate codecTagString from the list above.

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mxf_ffmpeg</format>
<audio>

<codec>pcm_s24le</codec>
<channel>0</channel>
<channel>1</channel>
<channel>2</channel>
<channel>3</channel>
<stream>1</stream>
<stream>1</stream>
<stream>1</stream>
<stream>1</stream>

</audio>
<video>

<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>mpeg2video</codec>
<bitrate>50000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<pixelFormat>yuv422p</pixelFormat>
<setting>
<key>flags</key>
<value>+ildct+ilme</value>
</setting>
<setting>
<key>top</key>
<value>l</value>

4.3.

Common presets

131

Vidispine REST APl Documentation, Release 5.x

</setting>

<setting>
<key>dc</key>
<value>10</value>

</setting>

<setting>
<key>gmin</key>
<value>1l</value>

</setting>

<setting>
<key>1min</key>
<value>1+QP2LAMBDA</value>

</setting>

<setting>
<key>rc_max_vbv_use</key>
<value>l</value>

</setting>

<setting>
<key>rc_min_vbv_use</key>
<value>1l</value>

</setting>

<setting>
<key>minrate</key>
<value>50000k</value>

</setting>

<setting>
<key>maxrate</key>
<value>50000k</value>

</setting>

<setting>
<key>bufsize</key>
<value>36408333</value>

</setting>

<setting>
<key>bf</key>
<value>2</value>

</setting>

<setting>
<key>codecTagString</key>
<value>xd5c</value>

</setting>

</video>
</TranscodePresetDocument>

New in version 5.0.

Depending on your license key Vidispine will use the XDCamHD encoder library from either MainConcept or Nablet.
If your license allows for both, the Nablet version will be picked when using the mpeg2video codec tag. You can
override this by using the vendor specific codec tags: nablet_mpeg2video and mc_mpeg2video.

Valid preset tags to use in the shape-tags are, final XDCamHD profile will be determined of input framerate:
e xdcam_ex_1920
* xdcam_ex_1440
e xdcam_ex_1280

e xdcam_hd_420_1440

132 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

e xdcam_hd_420_1280
e xdcam_hd_422_1920
e xdcam_hd_422_1280

4.3.6 DV

For DVCAM, DVCPRO and DVCPROS50, codec should be set to dvvideo, for DVCPRO HD, it should be
dv_100. To get 16x9 aspect ratio, targetDAR must be set (see example below). The value of pixelFormat
determines whether the output will be DV, DVCPRO or DVCPROS50.

Pixel format | Output
yuv420p DVCAM
yuv4dllp DVCPRO
yuv422p DVCPROS50

NTSC

To get NTSC output the following changes should be made.
e The framerate should have a numerator of 1001 and a denominator of 30000.
¢ The scaling should have a height of 480.

e codecTagString should have a value of dvpn.

Example
16x9 DVCPRO:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>avi</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1l</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>720</width>
<height>576</height>
<targetDAR>
<horizontal>16</horizontal>
<vertical>9</vertical>
</targetDAR>
</scaling>
<codec>dvvideo</codec>
<bitrate>25000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<gopSize>0</gopSize>
<pixelFormat>yuv4llp</pixelFormat>

4.3. Common presets 133

Vidispine REST APl Documentation, Release 5.x

<profile>CBR</profile>

<setting>

<key>codecTagString</key>
<value>dvpp</value>

</setting>
<setting>

<key>dtsmode</key>
<value>pts</value>

</setting>
</video>

</TranscodePresetDocument>

4.3.7 DNxHD

The codec should be set to dnxhd.

Avid DNxHR/DNxHD

In version 4.13, the MainConcept codec is available for DNxHD encoding. Set codec to mc_vc3
element to one of the following values.

. Set the preset

preset width | height | interlace_flag | quality Avid profile Id

VC3_SQ_720p_TR 960 720 progressive medium Avid DNxHD 100 1258
VC3_SQ_720p 1280 | 720 progressive medium Avid DNxHD 145 1252
VC3_HQ_720p 1280 | 720 progressive high Avid DNxHD 220 1251
VC3_HOX_720p 1280 | 720 progressive high extended | Avid DNxHD 220x | 1250
VC3_LB_1080p 1920 1080 progressive low Avid DNxHD 36 1253
VC3_SQ_1080p_TR | 1440 1080 progressive medium Avid DNxHD 100 1259
VC3_SQ_1080p 1920 | 1080 progressive medium Avid DNxHD 145 1237
VC3_HQ_1080p 1920 | 1080 progressive high Avid DNxHD 220 1238
VC3_HQX_1080p 1920 | 1080 progressive high extended | Avid DNxHD 220x | 1236
VC3_444_1080p 1920 1080 progressive RGB 4:4:4 Avid DNxHD 444 1256
VC3_SQ_1080i_TR | 1440 | 1080 top_first medium Avid DNxHD 100 1243
VC3_S0_10801 1920 | 1080 top_first medium Avid DNxHD 145 1244
VC3_HQ 10801 1920 | 1080 top_first high Avid DNxHD 220 1242
VC3_HQX 10801 1920 1080 top_first high extended | Avid DNxHD 220x | 1241
VC3_HQ DCI_2K 2048 1080 progressive high 1272
VC3_HQX DCI_2K 2048 1080 progressive high extended 1271
VC3_444 DCI_2K 2048 1080 progressive RGB 4:4:4 1270
VC3_HQ_DCI_4K 4096 | 2160 progressive high 1272
VC3_HQX DCI_4K 4096 | 2160 progressive high extended 1271
VC3_444_DCI_4K 4096 | 2160 progressive RGB 4:4:4 1270
VC3_1B any any progressive low Avid DNxHR LB 1274
VC3_SQ any any progressive medium Avid DNxHR SQ 1273
VC3_HQ any any progressive high Avid DNxHR HQ 1272
VC3_HQX any any progressive high extended | Avid DNxHR HQX | 1271
VC3_444 any any progressive RGB 4:4:4 Avid DNxHR 444 1270

Example:

<TranscodePresetDocument>
<format>mxf</format>

<audio>

</audio>

134

Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

<video>
<codec>mc_vc3</codec>
<preset>VC3_HQ_1080p</preset>
<setting>
<key>interlace_flag</key>
<value>progressive</value>
</setting>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
</video>
</TranscodePresetDocument>

4.3.8 RED

Vidispine support RED as an input format so there is no special shape-tag settings that needs to be made. However,
there are a few limitations and things to keep in mind.

Local file access

The transcoder needs to be able to read the RED file locally. Transcoder and Middleware needs to be running at the
same machine.

Choosing an appropriate quality

Demuxing of RED material is a very computational demanding task. Normal RED footage has a resolution of 4K or
5K. Decoding such a frame in full resolution and quality is sometimes a bit overkill. That is, when creating a lowres
file in 640x360 resolution you can save a lot of time by decoding the RED footage in a lower resolution.

You can specify what decoding/demuxing quality the transcoder should use by setting the demuxerSetting ele-
ment in your shape-tag:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>

</audio>
<video>

</video>
<demuxerSetting>
<key>r3d_demuxer_quality</key>
<value>full_premium</value>
</demuxerSetting>
</TranscodePresetDocument>

Valid values for r3d_demuxer_quality is:
e full_premium - Full resolution and the best quality
* half_premium - Half of the width and height of the original resolution and the best quality
* half_good - Half of the width and height of the original resolution with good quality
* quarter_good - Quarter of the width and height of the original resolution with good quality
* eight_good - An eight of the width and height of the original resolution with good quality

* sixteenth_good - A sixteenth of the width and height of the original resolution with good quality

4.3. Common presets 135

Vidispine REST APl Documentation, Release 5.x

Multi-file RED clips

In case of multi-file RED clip the naming of the clips will be crucial. They should already be named (which they are
as default):

<filename><index>.R3D

To preserve the filename of a RED file you can add a filename script to the storage where the RED files will be
imported. For example:

PUT /API/storage/<storage-id>/metadata/filenameScript HTTP/1.1
Content-Type:text/plain

if (context.getExtension() !'= null && (context.getExtension() == "R3D" || context.
—getExtension () == "r3d"))

"VX-" + context.getOriginalFilename () ;
else

context.getFileId() + "." + context.getExtension();

Then you need to import the clips into an placeholder, this way there will only be one transcoded file instead of X (X
being the number of clips). For example:

POST /API/import/placeholder?container=0&video=2
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INEF">
<field>
<name>title</name>
<value>My placeholder for RED files</value>
</field>
</timespan>
</MetadataDocument>

POST /API/import/placeholder/<placeholder-id>/video?uri=file:/REDTEST_001.R3D&tag=mp4
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
</timespan>

</MetadataDocument>

POST /API/import/placeholder/<placeholder-id>/video?uri=file:/REDTEST_002.R3D&tag=mp4
Content-Type: application/xml

MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INF">
</timespan>

</MetadataDocument>

4.3.9 AAC using Nablet

New in version 5.0.

The codec element should be set to nablet_aac and the encoder has support for up to 8 channels. The default
profile is Low Complexity (LC). This can be overridden using the settings element with key AAC_PROFILE. The
following values are accepted:

136 Chapter 4. Shapes, Components and Transcoding

Vidispine REST API Documentation, Release 5.x

¢ AAC_MAIN
e AAC_LC
¢ AAC_SSR

AAC_LTP

The stereo mode can be set using the settings element with the key AAC_STEREO_MODE. The following values

are accepted, default is: AAC_LR_STEREO:
e AAC_MONO
e AAC_LR_STEREO
* AAC_MS_STEREO

¢ AAC_JOINT_STEREO

Depending on how you want to mux the output stream you can use two different output formats. The default is ADIF,

which normally is used for MP4/MOV muxing. For MPEG transport

stream muxing it is preferred to use the ADTS

format. Use the settings element with the key AAC_OUTPUT_FORMAT. The following values are accepted:

e AF_ADIF

e AF_ADTS

Example
An MP4 using the Main profile:

<TranscodePresetDocument xmlns="http://xml.vidispine
<format>mp4</format>
<audio>
<codec>nablet_aac</codec>
<framerate>
<numerator>1</numerator>
<denominator>44100</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
<setting>
<key>AAC_OUTPUT_FORMAT</key>
<value>AF_ADIF</value>
</setting>
<setting>
<key>AAC_PROFILE</key>
<value>AAC_MAIN</value>
</setting>
<setting>
<key>AAC_STEREO_MODE</key>
<value>AAC_JOINT_ STEREO</value>
</setting>
</audio>
<video>
<scaling>
<width>1280</width>
<height>720</height>
</scaling>
<codec>h264</codec>
<bitrate>3000000</bitrate>

.com/schema/vidispine">

4.3. Common presets

137

Vidispine REST APl Documentation, Release 5.x

<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<preset>main</preset>
</video>
</TranscodePresetDocument>

138

Chapter 4. Shapes, Components and Transcoding

CHAPTER
FIVE

STORAGES AND FILES

5.1 Storages
Storages are where Vidispine will store any files that are ingested/created in the system. All files on a storage location
will get an entry in the Vidispine database, containing state, file size, hash etc. This is to keep track of any file changes.

For information about files in storage, see Files.

5.1.1 Storages
Storage types

A storage must be designated a type, based on what type of operations are to be performed on the contained files.
Operations in this context are transcode, move, delete, and destination (that is, placing new files here).

LOCAL A Vidispine specific storage, suitable for all operations. Note that LOCAL doesn’t necessarily imply that
the storage is physically local. It should however be a dedicated Vidispine storage. That is, files on such storages
should not be written to/deleted by any external application.

SHARED A storage shared with another application, Vidispine will not create new files, nor perform any write
operations here.

REMOTE A storage on a remote computer, files should be copied to a local storage before used.
EXTERNAL A storage placeholder.

ARCHIVE A storage meant for archiving, needs a plugin bean or a JavaScript, described in more detail at Archive
Integration.

EXPORT Files are not monitored, but copy operations to here will create a file entry in the database.

Storage states

Storages will have one of the following states:

NONE Not used.

READY Operating normally.

OFFLINE No available storage method could be reached.
FAILED Currently not used in Vidispine.

DISABLED Currently not used in Vidispine.
EVACUATING Storage is being evacuated.
EVACUATED Evacuating process finished.

For more information about storage evacuation, see section on Evacuating storages.

139

Vidispine REST APl Documentation, Release 5.x

Storage priority
New in version 4.17.

Storage priority can be set when creating a storage. If a shape has duplicate files on different storages, the file on the
highest priority storage will be selected as the source of transcoder or transfer jobs

Example:

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<priority>HIGH</priority>
<method>
</method>

</StorageDocument>

Auvailable priority values are: HIGHEST, HIGH, MEDIUM, LOW, LOWEST. Default priority of a storage is MEDIUM.

Storage groups

Storages can be placed in named groups, called storage groups. These storage groups can then be used in Storage
rules and Quota rules.

Storage capacity

When a storage is created a capacity can be specified. This is the total number of bytes that is freely available on the
storage. The free capacity is calculated as total capacity -sum(file sizes in database 1list).
Note that this means that the size of MISSING and LOST files are included in the used capacity. If you do not expect
a file with these states to return, it is best to delete the file entity using the API.

Auto-detecting the storage capacity

By setting the element aut oDetect in the StorageDocument you can make Vidispine read the capacity from the file
system. This only works if the storage has a storage method that points to the local file system, that is, a file://
URL

Warning: Do not enable auto-detection for multiple storages located on the same device, as each storage will
then have the capacity of the device. This means that storages may appear to have free space in Vidispine, when
there is actually no space left on the device.

Storage cleanup

If you have used storage rules to control the placement of files on storages then you may have noticed that files have
been copied to the storages selected by the rules, but that files on the source storages have not been removed.

This is by design. Vidispine prefers to keep multiple copies of a file, and only remove the files when a storage is about
to become full. The storage high and low watermarks control when files should start to be removed, and when enough
files have been removed and storage cleanup should stop.

For example, for a 1 TB storage with a high watermark at 80% and a low watermark at 40%, Vidispine will keep
adding files to the storage until the usage exceeds 800 GB. Once that happens cleanup would occur. Files that are
deletable, that is, that have a copy on another storage and that is not required to exist according to the storage rules,
will be deleted. Cleanup will stop once the usage has reached 400 GB or when there are no more deletable files.

If this behavior is not desirable, then there are two options.

1. Update the storage rules to specify where files should not exist, using the not element. For example, using
<not><any/></not>.

140 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>1</storageCount>
<storage>VX-122</storage>
<not><any/></not>

</StorageRuleDocument>

2. Set the high watermark on the storage to 0%. Updating the storage rules is preferred as storage cleanup will be
triggered continuously if the high watermark is set at a low level.

Evacuating storages

If you would like to delete a storage, but you still have files there which are connected to items, you can first trigger an
evacuation of the storage. This will cause Vidispine to attempt to delete redundant files, or move files to other storages.
Once the evacuation is complete, the storage will get the state EVACUATED.

5.1.2 Storage methods

Methods are the way Vidispine talks to the storage. Every method has a base URL. See Storage method URIs for the
list of supported schemes.

Retrieve a storage to check its status. The storage state shows if the storage is accessible to Vidispine. If a storage
is not accessible, then its state will be OFFLINE. Check the failureMessage in the storage methods to find out
why. The failure message will be the error from when the last attempt to connect to the storage was made, and will be
available even when the storage comes back online again. Compare last Success to lastFailure to determine
if the error message is current or not.

If multiple methods are defined for one storage, it is important, in order to avoid inconsistencies, that they all point
to the same physical location. E.g. a storage might have one file system method, and one HTTP method. The HTTP
URL must point to the same physical location as the file system method.

Storage method examples
Here are some examples of valid storage methods:
e file:///mnt/vidistorage/
e ftp://vidispine:pA5sw0rd!?@10.85.0.10/storage/

e azure://:%2ZmFuOD10MGgOMmI5ZnZuczc5YmhndjkrZzThodnV5Ymhgb21lwbW91lcmN4c2Rmc2Q0NThmd jQ0Mzc

Method types

Methods can also be of different type. By default, the type is empty. Only those methods (with empty types) are
used by Vidispine when doing file operations, the other methods are ignored, but can be returned, for example when
requesting URLs in search results.

Credentials are encrypted. This means that passwords cannot be viewed through the API/server logs.

Auto method types

One exception is method type AUTO, or any method type with prefix AUTO-. When a file URL is requested, with such
method type, the a no-auth URL will be created (with the method URL as base).

If there is no AUTO method defined, but a file URL is requested with method type AUTO, an implicit one will be used
automatically.

GET /item/VX-2406?content=uri&methodType=AUTO
Accept: application/xml

5.1. Storages 141

Vidispine REST APl Documentation, Release 5.x

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" 1d="VX-2406">
<files>
<uri>http://vs.example.com:8089/APInocauth/storage/VX-1/file/VX-6537/0.
—7354486788234469/VX-6537 .mp4</uri>
<uri>http://vs.example.com:8089/APInocauth/storage/VX-1/file/VX-6536/0.
—7638025887084131/VX-6536.dv</uri>
</files>
</ItemDocument>

The URL returned is only valid for the duration of fileTempKeyDuration minutes. The expiration timer is
reset whenever the URL is used in a new operation (e.g. HEAD (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec9.html#sec9.4) or GET (http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3)).

AUTO-VSA method type

New in version 4.16.

When using URIs generated from the AUTO method type with a VSA storage, the files will be streamed from VSA
through Vidispine server. Instead of that, the AUTO-VSA method type can be used to generate proxy URIs, which can
later be used to generate noAuth URIs from the VSA on-demand.

The same Vidispine configuration property £ileTempKeyDuration (default 10 minutes) is used to control the
duration of both the proxy URI from the server and noAuth URI from the VSA.

Example:

First, generate a AUTO-VSA noauth URI:

GET /storage/file/VX-123?methodType=AUTO-VSA
Accept: application/xml

Response:

<FileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vvx-123</id>
<path>demo.mov</path>
<uri>
http://localhost:8080/APInocauth/proxy/4e714b56-c3ab-49e9-b3f3-224aeaad73807
—redirect=true
</uri>
<state>CLOSED</state>

</FileDocument>

And then, ask VSA to generate a noauth URL

GET http://localhost:8080/APInocauth/proxy/4e714b56-c3ab-49e9-b3f3-224aeaad7380?
—redirect=true

Response:

HTTP/1.1 302 Found

Date: Thu, 20 Dec 2018 16:23:53 GMT

Accept—-Ranges: bytes

Location: http://127.0.0.1:7090/4016eff6-5801-4ed2-a89d-518c9ee3b54a/demo.mov
Content-Length: 0

The URI in the Locat ion header can be used to stream files from VSA directly.

142 Chapter 5. Storages and Files

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Vidispine REST API Documentation, Release 5.x

The VSA noauth service will be running on port 7090 by default. And a noAuthUri property can be added to
agent . conf to configure the noauth URI returned from the VSA.

For example:

noAuthUri=http://example.com:7090

VSA related settings
Method metadata

In addition to select method types, method metadata can be given as instructions for the URI returned. Two metadata
values are defined:

format Specifies if any special format of the URI should be returned. By default, the normal URI is returned. Two
values are defined:

SIGNED Returns a http URI that points contains a signed URI directly to Azure or S3 storage. If a signed
URI cannot be generated from the underlying (default) URI, no URI is returned.

SIGNED-AUTO As above, but if no URI can be generated, an AUTO URI (see above) is returned.

expiration Sets the expiration time of the signed URI, in minutes. If not specified, the expiration time is 60
minutes, unless azureSasValidTime is set.

contentDisposition Sets the Content-Disposition header for the signed URI. If not specified, the Content-
Disposition header will be set to null.

vsauri Specifies if the VSA URI (schema vxa) should use UUID or name syntax. By default, UUID is used.
UUID Return URI with hostname being the UUID of the VSA.
NAME Return URI with hostname being the NAME of the VSA.

GET /item/VX-206?content=uri&methodMetadata=format=SIGNED-AUTO&
—methodMetadata=contentDisposition=attachment%3b+filename%$3dmyfile.mov
Accept: application/xml

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" 1d="VX-206">
<files>
<uri>https://vstest.s3.amazonaws.com/VX-362.mp4?Expires=1439545041&
—AWSAccessKeyId=AKIAJCCXQRY2MW4YQUVQ& Signature=UcNdTImlvliomM%2FalGaYXf4QNfc%3D</
—uri>
<uri>http://vs.example.com:8089/APInoauth/storage/VX-1/£file/VX-336/0.
—+7638025117084131/VX-336.dv</uri>
</files>
</ItemDocument>

Parent directory management

For local file systems (method is using a £ile:// URI), Vidispine will by default remove empty parent directories
when deleting the last file in the directory.

This can be controlled, either on system level or on storage level. If the storage metadata keepEmpt yDirectories
is set to true, empty directories are preserved in that storage. Likewise, if the configuration property
keepEmptyDirectories is set to true, empty directories are preserved for all storages. Storage configuration
overrules system configuration.

5.1. Storages 143

Vidispine REST APl Documentation, Release 5.x

Storage scanning algorithm
By default, local file systems are scanned using what is called file visitors, which provides the best performance.

However, for some storages, especially mounted storages, ACLs on the file system may cause that algorithm to fail.
By specifying the algorithm, if is possible to force VidiCore to use another algorithm.

This can be controlled, either on system level or on storage level, by the storage metadata scanMethodAlgorithm.
Possible values are:

* VISITOR - use file visitors if possible, otherwise iterator. This is the default.
e ITERATE - use file iterators

e LEGACY

5.1.3 Files

When are files scanned?

In order to discover changes made to files, or if any files have been removed/added, Vidispine will scan the storages
periodically. It is possible to disable the scanning by not having any methods with browse=t rue on the storage. The
scan interval is also configurable on a per storage basis by setting the scanInterval property. The value should be
in seconds. Setting this to a higher value will lower the I/O load of the device, but any file changes will take longer to
be discovered. This also means that file notifications for file changes or file creation will be triggered later for changes
occurring outside of Vidispine’s control.

You can force a rescan of a storage by calling POST /storage/ (storage-id) /rescan. This will trigger an
immediate rescan of a storage if the supervisor is idle. If a supervisor is already busy processing the files then you
may notice that the rescan happens some time later.

Avoiding frequent scan of S3 storages

Scanning a S3 storage can be expensive both in terms of time and money. To make it
cheaper to access a S3 bucket, you can configure Vidispine to poll Amazon SQS for S3 events
(http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html).

See S3 Event SOS Notifications for more information.

File States

Files can be in one of the following states:

NONE Just created, not used.

OPEN Discovered or created, not yet marked as finished.

CLOSED File does no longer grow.

UNKNOWN The current state is not known.

MISSING File is missing from the file system/storage.

LOST File has been missing for a longer period. Candidate for restoration from archive.
TO_APPEAR File will appear on file system/storage, transfer subsystem or transcoder will create it.
TO_BE_DELETED The file is no longer in use, and will be deleted at the next clean-up sweep.
BEING_READ File is in use by transfer subsystem or transcoder.

ARCHIVED File is archived.

AWAITING_SYNC File will be synchronized by multi-site agent.

144 Chapter 5. Storages and Files

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Vidispine REST API Documentation, Release 5.x

Vidispine will mark a file as MISSING when it is first detected that the file no longer exists on the storage. No action
is taken for files that are missing. If the file does not appear within the time specified by lostLimit, then the file
will be marked as LOST. Lost files will be restored from other copies if such exist.

5.1.4 ltems and storages

By default, when creating a new file, Vidispine will choose the LOCAL storage with the highest free capacity. This
can be changed in a few different ways:

 Setting the defaultIngestStorage configuration property.
 Supplying the storageld parameter on the import request.

* Using Storage rules.

5.1.5 File hashing

Vidispine will calculate a hash for all files in a storage. This is done by a background process, running continuously.
Files are hashed one by one for performance reasons, so if a large number of files are added to the system in a short
time span it might take some time for all hashes to be calculated. The default hashing algorithm is SHA-1. This can
be changed by setting the configuration property £i leHashAlgorithm. See below for a list of supported values.
Additional algorithms

Vidispine can be configured to calculate hashes using additional algorithms by setting the addit ionalHash meta-
data field on the storage. It should contain a comma separated list (no spaces) of algorithms. The supported algorithms
are:

* MD2

* MD5

* SHA-1

* SHA-256
SHA-384
SHA-512

Manual hashing

Automatic background hashing can be disabled by setting the hashMode metadata field on the storage. A hash can
then be set manually by calling PUT {file-resource}/hash/ (hash).

5.1.6 Throttling storage 1/0

Vidispine will retrieve information about files on a storage at the configured scan intervals. If you find that the I/O
on your local disk drives is high, even when no transfers or transcodes are being performed, then you can try rate
limiting the stat calls performed by Vidispine. Do this by setting statsPerSecond or the configuration property
statsPerSecond to a suitable limit. During the file system scan, Vidispine will typically perform one stat per file.

An easy way to check if rate limiting the stat calls will have any effect is
to disable the storage supervisors in Vidispine. This can be done wusing PUT
/vidispine-service/service/StorageSupervisorServlet/disable. Remember to enable
the service afterwards or you will find that Vidispine no longer detects new files on the storages, among other things.

It could also be that it’s the file hashing service that is the cause of the I/O. You should be able to tell which service
is behind it by monitoring your disk devices. If there’s a high read activity/a large amount of data read from a device
then it could be the file hashing that’s the cause. If the number of read operations per seconds is high then it’s more
likely the storage supervisor.

5.1. Storages 145

Vidispine REST APl Documentation, Release 5.x

Tip: Use tools such as htop, iotop, dstat and iostat to monitor your systems and devices.

5.1.7 Throttling transfer to and from a storage

It is possible to specify a bandwidth on a storage or a specific storage method. This causes any file transfers involving
the specified storage or storage method to be throttled. If multiple transfers take place concurrently, the total bandwidth
will be allocated between the transfers. If a bandwidth is set on both the storage and its storage methods, the lowest
applicable bandwidth will be used.

To set a bandwidth you can set the bandwidth element in the StorageMethodDocument when creating or updating
a storage or storage method. The bandwidth is set in bytes per second.
Example

Updating a storage to set a bandwidth of 50,000,000 bytes per second.

PUT /storage/VX-2
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<capacity>1000000000</capacity>
<bandwidth>50000000</bandwidth>

</StorageDocument>

Example

Updating a storage method to set a bandwidth of 20,000,000 bytes per second.

PUT /storage/VX-2/method?uri=http://10.5.1.2/shared/&bandwidth=20000000

5.1.8 Temporary storages for transcoder output

The Vidispine transcoder requires that the destination (output) file can be partially updated. This is in order to be able
to write header files after the essence has been written.

In previous versions, this is solved by the application server storing the intermediate result as a temporary file on the
local file system (/tmp). This requires a lot of space on the application server.

With version 4.2.3, another strategy is available. Instead of storing the result as one file on the application server,
several small files are stored directly on the destination file system as “segments”. After the transcode has finished,
the segments are merged. On S3 storage, this merging can be done with S3 object(s)-to-object copy.

Control of the segment file strategy is via the useSegmentFi 1es configuration property.

5.1.9 Storage credentials

Storage credentials can be specified in the storage URL, but can also be saved in an external location and referenced
by an alias. This is configured in the server configuration file. Credentials can be stored in either:

* A Java Keystore (https://en.wikipedia.org/wiki/Keystore).
» HashiCorp Vault (https://www.vaultproject.io/).

* The local file system.

146 Chapter 5. Storages and Files

https://en.wikipedia.org/wiki/Keystore
https://www.vaultproject.io/

Vidispine REST API Documentation, Release 5.x

For example, a FTP storage could be configured either using ftp: //testuser:testpassword@ftp.example.com/,
or using ftp://exampleftp@ftp.example.com/; with exampleftp being an alias referencing the exter-
nally stored credentials.

Java Keystore

A Java Keystore can be used to store private keys, for example, the private keys for a Google Cloud Platform service
account.

Listing 5.1: server.yaml

secrets:
keyStore:
path: /etc/vidispine/server.keystore
password: changeit

Local file

For local file secret storage, the alias refers to the file under the configured secret path, containing the private key or
username and password credentials.

» With private keys, the file should contain the private key as is.

In certain configurations where there is a directory present in the secrets path with the same alias, the private key
should be stored under that directory as private_key.

* With username and password credentials, the file should be a directory, containing two files, username and
password.

e To use a private key to authenticate a SFTP storage, the file should be a directory, containing the files
username, private_key and private_key_password.

For example:

Listing 5.2: server.yaml

secrets:
file:
path: /etc/secrets/

mkdir -p /etc/secrets/exampleftp/

echo —-n "testuser" > /etc/secrets/exampleftp/username

echo -n "testpassword" > /etc/secrets/exampleftp/password

echo -n "keypassphrase" > /etc/secrets/exampleftp/private_key_password

v »r A

This could be one way to consume credentials from secrets in Kubernetes (http://kubernetes.io/docs/user-
guide/secrets/), or similar services that expose secrets via the local file system.

HashiCorp Vault

Using HashiCorp Vault the alias should match the name of a secret in Vault. Username and password credentials will
be read from the keys username and password; private keys from the private_key key and passphrase to the
private key from private_key_password.

For example:

5.1. Storages 147

http://kubernetes.io/docs/user-guide/secrets/

Vidispine REST APl Documentation, Release 5.x

Listing 5.3: server.yaml

secrets:
vault:
address: http://vault.example.com:8200
token: 2262e94c-39¢c3-b9%9a8-605d-£0450dfc558b
keyPrefix: secret/

The keyPrefix setting can be used to for example select the backend to use. For example, with Vault configured
with a “generic” backend mounted at secret/:

S vault mounts

Path Type Default TTL Max TTL Description
secret/ generic system system generic secret storage
sys/ system n/a n/a system endpoints used for control, |

—policy and debugging

$ vault write secret/exampleftp username=testuser password=testpassword

$ vault read secret/exampleftp

Key Value
refresh_interval 720h0mO0s
password testpassword
username testuser

5.1.10 Storage method URIs

Note: Storage method URIs require URI escaping for all characters that are reserved in URIs.

The following URI schemes are defined.

file
Syntax file:///{path}
Example file:///mnt/storage/, file:///C:/mystorage/
Note The URI file://mnt/storage/ isnotvalid! (But file:/mnt/storage/ is.)

ftp
Syntax ftp://{user}:{password}@{host}/{path}
Example ftp://johndoe:secr3tlRexample.com/mystorage/

Add query parameter passive=false to force active mode. To set the client side ports used in active mode, set the
configuration property ftpActiveModePortRange, the value should be a range, e.g. 42100-42200.

To set the client IP used in active mode, set the configuration property ftpActiveModeIp.

New in version 4.17: For some servers using a basic implementation of ftp and which does not support some
of the commands often found, e.g. listing a directory without having to step into it first, the query parameter
serverType=basic can be used if issues with connecting and listing files are experienced. This will in some
cases provide a better compatibility.

148 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

sftp
Syntax sftp://{user}:{password}@{host}/{path}
Example sftp://johndoe:secr3t@example.com/mystorage/
When using a private key to authenticate:
Syntax sftp://{alias}@{host}/{path}
Example sftp://examplesftpl@example.com/mystorage/

Note Currently only PKCS#1 keys are supported; using vault or local secrets.

http
Syntax http://{user}:{password}@{host}/{path}
Example http://johndoe:secr3t@example.com/mystorage/
Note Requires WebDAV support in host.

https
Syntax https://{user}:{password}@{host}/{path}
Example https://johndoe:secr3tlRexample.com/mystorage/
Note Requires WebDAV support in host.

omms
Syntax omms://{userId}: {userKey}@{hostList}/{clusterId}/{vaultId}/
Example omms://c2£6a2f4-6927-11el-cc94-ab94bd11183f:some%20secret@10.0.0.3,10.0.0.4/425
Note Object Matrix Matrix Store.

s3
Syntax s3://{accessKey}:{secretKey}@{bucket}/{path}
Example s3://KDASODSALSDI8U:RxZY1u23NDSIN293002Wd1Nyglmystore/storagel/

If no access key is provided, then the credentials will be read from the AwsCredentials.properties file in
the credentials directory, if one exists. Else, credentials will be read from the default locations used by the
AWS SDK (http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-roles.html).

Valid S3 bucket names (https://docs.aws.amazon.com/AW SJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/Bucket.html)
must agree with DNS requirements.

The following query parameters are supported:
endpoint The endpoint that the S3 requests will be sent to.

See Regions and Endpoints (http://docs.aws.amazon.com/general/latest/gr/rande.html) in the Amazon documen-
tation for more information.

region The region that will be used in the S3 requests.

See Regions and Endpoints (http://docs.aws.amazon.com/general/latest/gr/rande.html) in the Amazon documen-
tation for more information.

signer The algorithm to use to signing requests. Valid values include S3SignerType for AWS signature v2, and
AWSS3V4SignerType for AWS signature v4.

5.1. Storages 149

http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-roles.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-roles.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/Bucket.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Vidispine REST APl Documentation, Release 5.x

Default Signature algorithm will be selected by region.

Note: For Version 4 Signature only regions (http://docs.aws.amazon.com/AmazonS3/latest/dev/Using AW SSDK html#specify-
signature-version) (Beijing and Frankfurt) to work, the endpoint or region parameter must be set. Example:

e s3://frankfurt-bucket/?endpoint=s3.eu—-central-1.amazonaws.com

e s3://frankfurt-bucket/?region=eu-central-1

Storage method metadata keys can be used control the interaction with the storage.

storageClass The default Amazon S3 storage class that will be used for new files created on an Amazon S3
storage. Can be either standard, infrequent or reduced

Default standard

sseAlgorithm The encryption used to encrypt data on the server side. See Server-Side Encryption
(http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html). By default no encryption will
be performed.

This sets the x—amz-server—side—-encryption header on PUT Object S3 requests.
Example AES256

sseKeyId The encryption used to encrypt data on the server side. See Server-Side Encryption
(http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html). By default no encryption will
be performed.

This sets the x—amz-server—-side—-encryption-aws-kms—-key-id header on PUT Object S3 re-
quests.

If the sseAlgorithm is present and has the value of aws : kms, this indicates the ID of the AWS Key Man-
agement Service (AWS KMS) master encryption key that was used for the object.

The KMS KEY you specify in the policy must use the arn:aws:kms:region:acct-id:key/key-id
format.

Example arn:aws:kms:us-west-2:360379543683:key/071a86ff-8881-4ba0-9230-95af6d01call

accelerate Enable S3 Transfer Acceleration (http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-
acceleration.html).

Default false

Note: For S3 Transfer Acceleration (http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-
acceleration.html) to work, the endpoint or region parameter must be set. Also make sure that transfer
acceleration is enabled on the bucket.

Other S3 compatible endpoints may not support transfer acceleration.

retrievalTier The default Glacier retrieval tier to wuse when restoring the file. Can
be set to either Expedited, Standard or Bulk. See Restoring Archived Objects
(http://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html) for more information.

ssl Vidispine is by default using SSL when communicating with S3. Set to false to disable SSL support.
Default true

New in version 21.3.

150 Chapter 5. Storages and Files

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html

Vidispine REST API Documentation, Release 5.x

roleArn The role ARN to try to assume to access the content of the bucket.

In order to be able to access buckets and content across accounts, it is now possible to supply a role ARN that
VidiCore will try to assume to access the data.

roleExternallId The (optional) external id attached to the role specified as roleArn

stsRegion (optional) The region to where calls to assume role are made (AWS STS). This should be set to some-
thing as close to your system as possible to reduce latency and get better reponse times (example: eu-west -1,
us—-east-2).

Note:

* When a role is being assumed VidiCore will need to contact AWS Security Token Service (STS) in order
to complete the request. Unless the system is running on EC2/ECS the best practice when using role ARN
for S3 storages would be to make sure the st sRegion parameter is being used. If this is not supplied,
VidiCore will take more time trying to figure out which region to call (see below).

¢ If no region is specified OR VidiCore is NOT running on EC2/ECS, VidiCore will fallback to the AWS
default region which would be us—west—2. This is not recommended for optimal performance.

bucketOwnerFullControl Support for controlling ownership of uploaded objects
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html).

Set to t rue to have VidiCore attach the needed canned ACL to any uploads to this storage.

New in version 21.4.1.

Note: It is important to know that in order to have this feature working with VidiCore

as a managed storage, you must only restrict s3:PutObject with the “s3:x-amz-acl”: “bucket-
owner-full-control” in its own statement. Other actions such as s3:GetObject, s3:ListBucket

etc must still be allowed without this restriction in order for VidiCore to manage the stor-

age. Information about what actions VidiCore need to function properly can be found here
(https://support.vidispine.com/space/CKB/650510592/Configuring+and+adding+a+S3+bucket+to+Vidinet#Configuring-
and-adding-permissions-IAM).

ds3
Syntax ds3://{accessKey}:{secretKey}Q@{bucket}/{path}
Example ds3://KDASODSALSDI8U:RxZY1u23NDSIN2NygRbucketname/?endpoint=http://blackpearl-e
Note Spectra BlackPearl Deep Storage Gateway.

The following query parameters are supported:

endpoint The endpoint of the BlackPearl service. This is mandatory.

chunkReadyTimeout The maximum time (in seconds) of waiting for BlackPearl to prepare the target data chunk,
or an EOF will be returned.

Default 1800

checksumType If set, a client-side checksum will be computed and sent to BlackPearl gateway for data integrity
verification. Supported checksum types are: md5, crc32 and crc32c.

Default Empty, no checksum will be sent.

5.1. Storages 151

https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://support.vidispine.com/space/CKB/650510592/Configuring+and+adding+a+S3+bucket+to+Vidinet#Configuring-and-adding-permissions-IAM

Vidispine REST APl Documentation, Release 5.x

azure
Syntax azure://:{accessKey}@{accountName}/{containerName}

Example azure://:KLKau23dEEO2Wd1lLiO@companyname/containerl/

gs
Google Cloud Storage (https://cloud.google.com/storage/).
Using a P12 private key:
Syntax gs://{privateKeyAlias}@{bucket}/?project={project}&account={account}
Example gs://test-key-pl2@test-bucket/?project=12345&account=67890
Using a JSON private key:
Syntax gs://{privateKeyAlias}@{bucket}/?project={project}
Example gs://test-key-json@test-bucket/?project=12345
Using an OAuth2 access token:
Syntax gs://:{accessToken}Q@{bucket}/?project={project}
Example gs://:abcl23@test-bucket/?project=12345
Using the credentials file specified in the GOOGLE_APPLICATION_CREDENTIALS environmental variable:
Syntax gs://{bucket}/

Example gs://test-bucket/

universal

A universal URI is used to create a universal storage method. A universal storage method does not have a root URI,
instead all files contain their own absolute URI.

5.1.11 The universal storage method

A universal storage can be used to let Vidispine manage files which are not stored under a common root. Universal
storages can be used like other storages, but there are certain differences. Before jumping to the differences, an
example on how to use the storage:

Adding a universal storage

POST /storage
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<capacity>150000000000</capacity>
<method>
<uri>universal:/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
</method>
<showImportables>true</showImportables>
</StorageDocument>

152 Chapter 5. Storages and Files

https://cloud.google.com/storage/

Vidispine REST API Documentation, Release 5.x

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>STORAGE-VX-722</id>
<state>NONE</state>
<type>LOCAL</type>
<capacity>10000000000000</capacity>
<freeCapacity>10000000000000</freeCapacity>
<method>
<id>STORAGEMETHOD-VX-728</id>
<uri>universal:/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
<type>NONE</type>
</method>
<metadata/>
<lowWatermark>10000000000000</lowWatermark>
<highWatermark>10000000000000</highWatermark>
<showImportables>true</showImportables>
</StorageDocument>

Adding a file

POST /storage/VX-722/file?path=file:///home/baz/vacation.mp4

<FileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>FILE-VX-68264</id>
<path>file:///home/baz/vacation.mp4</path>
<uri>file:///home/baz/vacation.mp4</uri>
<state>OPEN</state>
<size>-1</size>
<timestamp>2017-05-11T13:37:46.737+02:00</timestamp>
<refreshFlag>1</refreshFlag>
<storage>STORAGE-VX-722</storage>
<metadata/>

</FileDocument>

After scanning, the metadata and hash checksum of the file will be updated.

Adding and importing a file

A file can be registered to a universal storage with its original URI, and imported at the same time:

POST /storage/VX-722/file/import?path=https://www.vidispine.com/wp—-content/themes/
—vidispine/assets/image/vidispine-logo-small.png

The HTTPS URI in the request will be the actual source of the original shape of the item created.

Compared with a regular import request:

POST /import?uri=https://www.vidispine.com/wp—-content/themes/vidispine/assets/image/
—vidispine-logo—-small.png

The source file will be copied to a Vidispine managed storage. The newly copied file will be the file that makes up the
original shape of the item. The HTTPS URI is then no longer used after the import.

5.1. Storages 153

Vidispine REST APl Documentation, Release 5.x

Differences to regular methods

» New files are not discovered by a universal method. For new files to be registered, an API call has to be done.
However, Vidispine will detect when files have changed or been deleted.

« Files can be written to a universal storage. However, it requires that either a full URI is given as API input, or
returned by a file name script. Example for copying a file:

POST /storage/file/VX-4448/storage/VX-722?filename=file:///tmp/somenewfile.txt

* There is no capacity detection.

* Scanning can be slower than for regular storages. The universal URI is not meant to be used to thousands of
files in one file system. Then it is better to use the regular URI, and reference files by their relative paths.

5.2 Automatic import

A storage can be configured to automatically import new files/image sequences that are detected. Auto-import rules
define what transcodes that should be performed as well as what metadata to be used if none can be found. Metadata
can automatically be found if it shares the same filename and has the extension . xm1, for example video.avi and
video.xml.

Auto-import rules can also use Import settings to set up access control lists by setting the optional settingsId
element.

5.2.1 Import using a specific transcoder resource

To use a specific transcoder resource during auto import, specify its resource id in the auto import rule using the
resourceld element:

PUT /storage/VX-2/auto-import
Content-Type: application/xml

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>myflvtag</tag>
<resourceld>VX-1</resourceld>

</AutoImportRuleDocument>

You may also specify which transcoder resource to use by setting the default Transcoder configuration property.

5.2.2 Setting a user for jobs started as a result of an auto import rule

The default behavior is that jobs started from an auto import rule will not have a user set. This can be changed by
setting the user element in the rule:

PUT /storage/VX-2/auto-import
Content-Type: application/xml

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>myflvtag</tag>
<user>angelalcompany.com</user>

</AutoImportRuleDocument>

5.2.3 Importing with a metadata file of an external format

Vidispine also supports auto imports with a metadata XML file that is of a different format than the native Vidispine
MetadataDocument. This is achieved by associating a Metadata projections (XSLT transformation) with the auto

154 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

import rule. First, create the projection, then set the auto import rule:

PUT /storage/VX-2/auto-import
Content-Type: application/xml

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>myflvtag</tag>
<projection>myProjection</projection>

</AutoImportRuleDocument>

Where the projection element contains a Projection id.

Any auto imports from this storage will then first transform the supplied XML file using the specified projection.

5.2.4 Disable automatic import rules

Auto-import rules can be disabled by setting the enabled field to false, or by using the disable rule request. When
a rule is disabled then no new auto-import jobs will be created for new files discovered on the storage.

Jobs will be created once the rule is enabled again. By default rules are enabled.

Example

If the admin only wants the user to be able to import during specific hours a program like cron
(https://help.ubuntu.com/community/CronHowto) could be used:

0 0 » curl -X PUT -uadmin:admin http://localhost:8080/API/storage/VX-1/auto-
—import/enable

0 5 % % » curl -X PUT -uadmin:admin http://localhost:8080/API/storage/VX-1/auto—
—import/disable

5.2.5 Sidecar auto import

If auto-import is enabled, sidecar files are by default identified by file extension and imported as metadata to files with
matching filenames. See Importing sidecar files for the supported sidecar formats which are automatically identified.
The AutoImportRuleDocument contains two fields determining how sidecar are handled by auto-import:

ignoreSidecarImport
False by default. If set to true, files with a sidecar file extension are not imported in any way.

disabledSidecarExtensions
Extensions can be specified here to be excluded from being treated as sidecar files, and may instead be imported
as new items.

Since 4.16

If there are several files in a storage with the same file name (prefix) with different extensions, only one will be
imported as an item and others will be either imported as sidecars or ignored. This can be changed by setting the
system-wide configuration property groupImportableFiles to false. Multiple files with the same prefix can
then be auto-imported as individual items.

Multiple sidecar files can be imported to the same item. If groupImportableFiles is false, one sidecar file may
be auto-imported multiple times as metadata for different items with the same file prefix.

5.2.6 Title as metadata

The AutolmportRuleDocument contains a field fileNameAsTitle. Setting this property to t rue means that the
“title” fields of all single files imported form this storage will be set to their file names.

5.2. Automatic import 155

https://help.ubuntu.com/community/CronHowto

Vidispine REST APl Documentation, Release 5.x

5.2.7 Applying file name filters to auto import rules
There are two kinds of filename filters that can be applied to auto import rules:

Exclusion filters Used to exclude files from being auto imported. This can be useful when the OS creates files
automatically, e.g. Thumbs .db on Windows or .DS_Store files on Mac OS. Note that the expression must
match the entire path, not only a part of the path.

Shape tag filters These can be used to transcode the imported file using a specific shape tag when a file name follows
a certain pattern. You might want files ending in . t 1 £ £ to be transcoded using the tag 1 owimage for example.

The filters are specified in the XML document you use to create/update the auto import rule.

Example

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<metadata>
<timespan start="-INEF" end="+INEF">
<field>
<name>title</name>
<value>This is an auto—-imported item.</value>
</field>
</timespan>
</metadata>
<tag>generictag</tag>
<excludeFilter>
<pattern>.*\.DS_Store</pattern>
</excludeFilter>
<shapeTagFilter>
<pattern>.x\.tiff</pattern>
<tag>lowimage</tag>
</shapeTagFilter>
<shapeTagFilter>
<pattern>.x\.mxf</pattern>
<tag>lowvideo</tag>
</shapeTagFilter>
</AutoImportRuleDocument>

This rule will exclude any file ending with .DS_Store. Any files ending with .tiff will be imported with the
shape tag 1owimage, and any files ending in .mxf will be imported with the shape tag 1lowvideo. All files will be
imported with the shape tag generictag.

5.2.8 Auto import of image sequences

Deprecated since version 4.6: Define a sequence pattern on the storage and use an auto-import rule without a sequence
definition instead.

Image sequences can be auto detected and imported if their file names match the predefined regex in AutoImportRule-
Document. The elements in the document are:

fileSequence Defines the file name pattern, and it is mandatory.

sequenceMetadata Defines the metadata file name pattern.

idGroup The matching group in the regex should be used as the id of the file sequence.

numGroup The matching group in the regex that should represent the position of a file in a sequence.

timeout A sequence is considered as completed after a certain timeout (in seconds). The default timeout is 60
seconds.

156 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

Example:

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>mp4</tag>
<metadata>
<timespan end="+INF" start="-INEF">
<field>
<name>title</name>
<value>auto-imported item.</value>
</field>
</timespan>
</metadata>
<sequenceDefinition>
<sequenceMetadata>
<regex> (.*) -metadata.xml</regex>
<idGroup>1</idGroup>
</sequenceMetadata>

<fileSequence>
<regex> (.*)—-([0-9]+) . (dpx|tga|png| jpg) </regex>
<idGroup>1</idGroup>
<numGroup>2</numGroup>
<timeout>10</timeout>
<!-- seconds—-—>

</fileSequence>

</sequenceDefinition>
</AutoImportRuleDocument>

Given a storage with the above import rule, with the files:

foo-metadata.xml
foo-001.dpx
foo-002.dpx
foo-002.dpx

Then these would be recognized as a sequence foo with foo-metadata.xml as the metadata.

5.3 Storage rules

Storage rules are a way of controlling the availability of files. The rules describe where files of different types are
stored. Settings include a minimum number of storages, specific storages and priorities for how suited a storage is
for a particular type. A rule can be applied on a specific item, collection, library or shape tag. To further filter which
shapes that the rules applies to, a shape tag can be set. Files can be named using storage name rules.

A storage rule can also describe where files should not be stored, in which case files will be eagerly removed. The
default is otherwise to start removing files once the high watermark on a storage has been reached. A rule can specify
specific storages or storage groups, or that all other storages should be excluded by using the “all” qualifier.

Warning: Negative rules do not work for storages of type ARCHIVE

Storage rules on collections will also be inherited to items in sub-collections. See Inherited rule example.

Files can also be load balanced across multiple storages.

5.3. Storage rules 157

Vidispine REST APl Documentation, Release 5.x

5.3.1 Resolving storage rules

If a minimum number of storages has been set and an insufficient amount of specific storages are given, priorities are
used to pick a suitable storage. The different priority criteria can be seen in the table below. The criteria type is given
together with an integer describing its priority, where a lower number means that it is more important than an entry
with a higher number.

Type Description
bandwidth | Prioritizes bandwidth.
capacity Prioritizes free available space.

Which rules apply?

Certain rules takes precedence over other rules. There are three things that factors into this decision process (ordered
according to their importance):

1. The precedence given to the rule.
2. The type of the entity the rule is applied to.
3. Whether the rule is set to a certain shape tag or not.

Below a table of available precedence values can be seen, ordered from most important to least important.

Name

HIGHEST

HIGH

MEDIUM (default value)
LOW

LOWEST

Below a table of the difference entity types can be seen, ordered from most important to least important.

Name

ITEM

COLLECTION

LIBRARY

GENERIC (the type used if set directly on a shape tag)

So for example a rule with the precedence value HIGHEST, that is applied to a certain shape tag on an item will always
take precedence over any other rule.

How are storage rules applied?

Since a shape can have 0 or more shape tags, there can be some ambiguity between the rules. Below a basic algorithm,
that describes how the rules are applied, can be seen.

1. Start out with an empty set of storages, S.

2. Add all storages, given in the specific rules, to S.

3. If § is empty, add in storages specified in the generic rule.
4

. Set the minimum required storages, n, to equal the highest number specified in the specific rules and the generic
rule.

5. If the size of S is less than n:
(a) Retrieve the priorities from one of the specific rules.
(b) If no specific rule specified any priorities, use the generic rule.

(c) If the generic rule did not specify any priorities, use some system default priorities.

158 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

(d) Attempt to fill S using the priorities.

5.3.2 Examples
Simple rule example

Setting a simple rule on a item, dictating that the item’s original shape should exist on at least two storages, and one
of them must be storage VX-3

PUT /item/VX-28/storage-rule/original
Content-type: application/xml

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<storage>VX-3</storage>

</StorageRuleDocument>

Negative rule example

Setting a simple rule on a item, dictating that the item’s original shape should exist on at least two storages, and one
of them must be storage VX-3, and it must not exist on storage VX-2.

PUT /item/VX-28/storage-rule/original
Content-type: application/xml

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<storage>VX-3</storage>
<not>
<storage>VX-2</storage>
</not>
</StorageRuleDocument>

Load balancing example

The pool element can be used to specify the storages that files could be stored on. This can be used to spread files
across multiple selected storages.

For example, to specify that a file should exist on at least two of storages VX-1, VX-2 and VX-3:

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<pool>
<storage>VX-1</storage>
<storage>VX-2</storage>
<storage>VX-3</storage>
</pool>
</StorageRuleDocument>

Or to have one copy on S3 (storage VX-1 in this example) and one copy on a local storage:

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<storage>VX-1</storage>
<pool>
<group>local-storage-pool</group>

5.3. Storage rules 159

Vidispine REST APl Documentation, Release 5.x

</pool>
</StorageRuleDocument>

Inherited rule example

Storage rules on collections by default only applies to the items in the collection and does not apply for items that exist
in any sub-collections.

To change so that a collection storage rule applies to all items in it and all items in any sub-collections, recursively,
use:

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>1</storageCount>
<inherited>true</inherited>
<storage>VX-1</storage>

</StorageRuleDocument>

5.4 Filenames

By default, Vidispine names new files according to site-id—number*#¢¢,¢“**extension, all in one folder. This pattern
can be overridden. This section describes three very different ways.

5.4.1 Using a tree structure for files

Putting all files in the same directory of a storage can cause degraded performance on some file systems. By setting
the configuration property fileHierarchy, the naming convention is changed to site-id — numberl / number2
. extension. The number set in £ileHierarchy controls the size of number2. Example:

fileHierarchynotset,orQ | fileHierarchy =100 | fileHierarchy =1000
VX-7.mp4 VX-0/07.mp4 VX-0/007.mp4
VX-47232.mp4 VX-472/32 .mp4 VX-47/232 .mp4

Note that the splitting into subdirectories is currently only done in one level, so no VX-4/72/32 .mp4.

The configuration property may be changed at any time, but old files will not be renamed.

5.4.2 Storage name rules

A storage name rule dictates the filename that the file of a particular shape should have on a certain storage. Note that
these rules doesn’t make sure a file is actually located on a storage, it just says what filename a file should have if it is
located on that storage. Storage name rules are often used together with storage rules

5.4.3 Naming files on storage

The default naming convention of can be overridden on a per-storage basis by associating a JavaScript script to the
storage.

The script will be invoked whenever a file needs to be created on the storage.

Setting the script

The JavaScript is stored as metadata filenameScript to the storage. That is, the code is set using PUT
/storage/ (storage-id}/metadata/filenameScript.

If using curl, use -——data-binary instead of —d to make sure all new-line characters are kept.

160 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

Input

In the execution context of the script, there is a variable named context, which has the following functions:

context .getShape ()
Returns a ShapeType (see Vidispine XSDs) object.

For example, to get the essence version, use context.getShape () .getEssenceVersion (). Can
return null.

context .getJobMetadata ()
Returns a java.util.Map<String, String>. Canbe null.

context.getItem()
Returns an ItemType, which is the same outputas GET /item/ (item—-id) ?content=metadata, shape, access, exte
Can return null.

context.getStorage ()
Returns a StorageType.

context .getComponent ()
Returns a ComponentType. Can return null.

context .getExtension ()
Returns the suggested extension for the file. Can return null.

context.getFileId()
Returns the file id of the file to be created.

context.getTags ()
Returns a java.util.Collection<String> of the shape tags of the shape the file belongs to.

context.getOriginalFilename ()
Returns the original filename that was used when item was imported.

context .getOriginalComponentFilename ()
Returns the original filename that was used when component was created.

context .getChannel ()
Most of the time this will return null, except when you want to split audio channels to separate files.

context .getJobId()
Returns the job id.

context .getJobType ()
Returns the job type.

Output

The script should return (last value) the file name of the file.

Existing file names

If the suggested file name is already in use on the Storage, the script will be called again, up to 10 times. The new

invocations will run in the same context as the previous, so it is possible to store information, e.g. sequence numbers,
to not repeat the same file name.

Example

5.4. Filenames 161

Vidispine REST APl Documentation, Release 5.x

var 1 = "foobar-"+context.getStorage () .getId()+"/"+context.getFileId();
if (context.getExtension() != null)
1 += "."+context.getExtension();

5.5 Image sequences

Image sequences can be imported into Vidispine just like any other video file.

5.5.1 Overview

An image sequence is made up of multiple sequentially numbered images files. Typically each file represents a video
frame.

All files in a sequence are represented using a single file in Vidispine. Such files have a type of FILE_SEQUENCE.

<FileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VX-5591787</id>
<path>Vx-5591787//.jpg</path>
<uri>file:/srv/media/VX-5591787/*.jpg#file=0-49</uri>
<state>CLOSED</state>
<size>-1</size>
<timestamp>2016-06-23T14:50:58.129+02:00</timestamp>
<refreshFlag>1</refreshFlag>
<storage>VX-1</storage>
<metadata/>
<range start="0" count="50"/>
<type>FILE_SEQUENCE</type>

</FileDocument>

5.5.2 Importing image sequences

Image sequences can be imported using a sequence URI. For example, to import an image sequence whose sequence
numbers are zero padded:

POST API/import?uri=file:///srv/data/takel/*.png#£ile=00000-15000

<JobDocument xmlns:ns0="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-127247</jobId>
<user>admin</user>
<started>2016-06-23T13:02:04.811z</started>
<status>READY</status>
<type>PLACEHOLDER_IMPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

5.5.3 Detection of image sequences

To have image sequences detected on a storage, the storage must first be configured with one or more sequence
patterns. Otherwise, individual files in the sequence will appear as separate files.

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VxX-1879</id>
<state>NONE</state>
<type>LOCAL</type>
<capacity>16851361792</capacity>

162 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

<freeCapacity>16763961344</freeCapacity>
<timestamp>2016-06-23T15:04:02.873+02:00</timestamp>
<method>

<id>Vx-1829</id>

<uri>file:///srv/media/</uri>

<read>true</read>

<write>true</write>

<browse>true</browse>

<lastSuccess>2016-06-23T15:04:02.878+02:00</1lastSuccess>

<type>NONE</type>
</method>
<sequence>
<regex>.*— (\d+) .png</regex>
</sequence>

</StorageDocument>

Files that match the pattern and that have the same sequence key will appear as a single file with type
FILE_SEQUENCE. These files can then be imported directly from the storage just like any other files.

POST /storage/file/VX-46264/import
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<!-- any metadata to add to the item —-—>
</timespan>
</MetadataDocument>

5.5.4 Sequence URIs

Any URI containing a file fragment is considered as a sequence URI, that is, as a URI that identifies multiple files in
a sequence. A sequence URI should contain a wildcard character that identifies the location of the sequence number.

Syntax: file=[wildcard:] [start[-end]][,...]

* The default wildcard character is . If the wildcard character is already present in the file name or path, then
another wildcard character should be selected and specified in the file fragment.

¢ The default starting index is 0.
* The ending index is inclusive.

* When importing sequences using the API, only the last range in the file fragment may be open. That is,
file=0-10, 40~ is supported, but file=0-10,40-, 10-20 is not.

Example:
e file:///srv/media/inside-tardis/*.Jjpg#file=00000-90000
e file:///srv/media/inside-tardis/X.jpg#£file=X:00000-90000

e http://media.example.com/?id=takel&num=+#file=0-

5.5.5 Sequence patterns
The sequence pattern element contains a <regex>, and a optional <numGroup>.
The value of the <regex> should be a valid java regex string with some restrictions:

* There needs to be a \ d+, which would match multiple digits. The matching digits will be used as the sequence
number. The other parts will become the sequence key, which will be used to identify the sequence.

5.5. Image sequences 163

Vidispine REST APl Documentation, Release 5.x

Important: A sequence number can only contain one or multiple digits. Only numbers and zero padded
numbers are supported

* \d+ needs to be in a capturing groups, if there are other groups. And in this case, <numGroup> needs to be
set.

The value of <numGroup> is the index of the sequence number capturing group.

Some Examples:

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vvx-1879</id>

<sequence>
<regex>.*—- (\d+) .png</regex>
<numGroup>1</numGroup>
</sequence>
</StorageDocument>

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vx-1879</id>
<sequence>
<regex> (.*) - (\d+) .png</regex>
<numGroup>2</numGroup>

</sequence>
</StorageDocument>

5.6 URI’s, URLs, and Special Characters

5.6.1 File paths

There are a number of characters that have special uses in various file systems.

Characters not allowed in path segments (directory names, file names)
* U+0000 - U+001F (including TAB, CR, NL)
e U+002F (/)
o U+005C (\)
While technically possible to use in path segments on various file systems, it is not possible to use these characters in
Vidispine path names.
Characters not supported on certain platforms
» U+007F (DEL)
U+003F (?)
U+002A (+)
U+0024 ($)
U+003A (:)

¢ Paths that are MS-DOS device names (LPT1, etc)

164 Chapter 5. Storages and Files

Vidispine REST API Documentation, Release 5.x

* U+D800 - U+10FFFF

These characters may or may not work, depending on operating system and Java version. It is strongly suggested that
they are not used.

5.6.2 API calls
In calls to the Vidispine API, the following rules apply:
 Path segments are encoded using RFC3986 (http://www.ietf.org/rfc/rfc3986.txt).
— Non-ASCII characters are encoded in UTF-8, and do not have to be percent encoded.

— Percent encoding. Particularly space is encoded as %20 (not +, so Java’s URLEncoder is not the right
tool!)

Non-ASCII characters are encoded in UTF-8, and do not have to be percent encoded

* Percent encoding. Particularly space is encoded as %20 (not +, so Java’s URLEncoder is not the right tool!)
* Query parameter values are encoded using RFC2396 (http://www.ietf.org/rfc/rfc2396.txt)

— Non-ASCII characters need to be percent encoded.

— Space can be encoded as + (or %20).

Non-ASCII characters need to be percent encoded
» Space can be encoded as + (or %20)

e URIs in XML documents need to be quoted according to XML, e.g. &amp; for &.

Note: As a consequence, path that are used as query parameters (e.g. the URL parameter in imports), need first to be
encoded as a URI, then encoded as a URL query parameter.

Example 1
Path: /tmp/my movie.dv
AsaURIL file:/tmp/my%20movie.dv

As a URL parameter for import: http://localhost:8080/API/import?URL=£11e%$3A%2Ftmp%2Fmy%$2520movie.dv
(see below)

Note that the space has to be quoted twice. First to %20 in the URI, than the percent sign in %20 have to be quoted to
%2520.

Example 2

Path: /tmp/téte-a-téte.dv

AsaURI: file:/t%C3%AAte-%C3%A0-t%$C3%AAte.dv (UTF-8 is used for the special characters, then percent
encoded) (Optionally: file:/téte-a-téte.dv)

As a URL parameter for import: http://localhost:8080/API/import?URL=t%25C3%25AAte-%25C3%25A0-t%25C3%

Code example

The following Java code, using Jersey’s UriBuilder, shows how to generate valid API calls:

5.6. URI’s, URLs, and Special Characters 165

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2396.txt

Vidispine REST APl Documentation, Release 5.x

String path = "/tmp/téte-a-téte.dv";

URI uri = new File(path).toURI();

URI callUri = UriBuilder.fromUri ("http://localhost:8080/API/import").queryParam("uri",
— "{uri}").build(uri);

Warning: In previous versions of Vidispine, the following call was accepted:
http://localhost:8080/API/import?URL=file:/tmp/my+movie.dv. However, this is not
valid, as the actual value of the parameter is then file:/tmp/my movie.dv , which is not a valid URI
(However, http://localhost:8080/API/import?URL=file:/tmp/my%2520movie.dv is valid.)

See also:

e The URLEncode and URLDecode Page (http://www.albionresearch.com/misc/urlencode.php)

166 Chapter 5. Storages and Files

http://www.albionresearch.com/misc/urlencode.php

CHAPTER
SIX

JOBS AND TASK DEFINITIONS

6.1 Jobs

Jobs make up the long running tasks in Vidispine. They are created in response to requests that would otherwise not
be able to respond in time, such as import, export and transcode requests.

The actions performed by a job is determined by its type. Bound to the type are a number of steps, or tasks, defined by
the task definitions. The tasks form a graph, and typically execute in sequence, but it is also possible for tasks to start
in parallel. This happens for example when importing and transcoding a growing file. The transfer step will initiate
the transfer and then trigger the transcode step to start once enough data (the header) from the file has been transferred.

INISHED,
FAILED

ABORTED

The states of a job are illustrated above. See below for a full description of the states and of the job step states.

6.1.1 Creating jobs

Create jobs by making requests to other RESTful resources:

167

Vidispine REST APl Documentation, Release 5.x

Job type Relevant documentation

Import jobs Imports (Also Importing a file from a storage)
Export jobs Exports

Thumbnail jobs Thumbnail settings

Shape update/Essence version jobs | Shapes

File actions Files

Sequence rendering Item sequences

Item list job Listing items in batch

Shape analyze Shape analysis

6.1.2 Concurrency

The number of jobs that execute in parallel is determined by the concurrentJobs configuration property.

Job pools

Using job pools, it is possible to decide how many jobs of different priorities that can run concurrently. Job pools are
configured using the job pool configuration resource.

If no pools have been defined then <concurrentJobs> controls the number of concurrent jobs. This is the same
setting as the concurrentJobs configuration property. So by default the job pool configuration will look like:

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<concurrentJobs>3</concurrentJobs>
</JobPoolListDocument>

Warning: Jobs with priority IMMEDIATE are always started, even if the max concurrent jobs limit is reached.
This could impact system performance. To execute the job with IMMEDIATE priority the user must be a super
user, that is, have role _super_access_user.

Note: The max concurrent job setting will only have an effect if it is lower then the size of all pools combined.

Priority pools

To start using priority job pools, the job pool definitions must be configured. Priority job pools make it possible to
limit the number of concurrent low priority jobs, to make sure that higher priority jobs are able to start even if there
are a large number of low priority jobs waiting to be started.

PUT /configuration/job-pool
Content-Type: application/xml

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
<pool>
<priorityThreshold>LOWEST</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

168 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

This configuration will allow at most 3 jobs with a priority of LOWEST to MED IUM to execute at the same time. It will
also allow up to 5 concurrent HIGH/HIGHEST priority jobs, as the second pool will contain jobs with a priority of
LOWEST or higher (the priority threshold is the lower bound and pools have no upper priority bound.)

If there is no job pool with a priority threshold that matches low priority jobs then such jobs will not be started. For
example, to only let jobs with a priority of MEDIUM or higher to execute:

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

Dedicated pools
New in version 5.4.

To start using a dedicated job pool, the configuration property dedicatedJobPool must be set to true. See
create/modify configuration properties for more information. The job pools must also be configured. If no pools have
been defined, the default behaviour will occur where the <concurrent Jobs> controls the number of concurrent
jobs, regardless if the dedicatedJobPool is set to t rue or not.

Dedicated job pools make it possible to dedicate certain pools to jobs of certain priority. This can be used to make sure
that jobs with all priorities are able to start, regardless of how large the number of other priority jobs that are ready to
start.

A job pool, with a priority threshold and a size, defines the upper limit of how many jobs of that priority that are
allowed to run in that pool. If there are no ready jobs of that priority, those slots will be used for higher priority jobs.

PUT /configuration/job-pool
Content-Type: application/xml

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
<pool>
<priorityThreshold>LOWEST</priorityThreshold>
<size>5</size>
</pool>
</JobPoolListDocument>

This configuration dedicates certain pools for specific priority jobs. The size of priority threshold HIGH allows 2 jobs
of priority HIGH to run in that pool. If there are no jobs with priority HIGH ready to be started, jobs with priority
HIGHEST will use those 2 slots.

The size of priority threshold MEDIUM allows for 3 jobs of priority MEDIUM to run in that pool, concurrently with 2
jobs with priority HIGH, as defined by the first pool. If there are no jobs with priority MEDIUM ready to be started,
jobs with priority HIGHEST will use those 3 slots. If there are no jobs with priority HIGHEST ready to be started,
then the 3 MEDIUM slots will be used by jobs with priority HIGH.

The last defined size of priority threshold LOWEST allows for 5 jobs with priority LOWEST to run concurrently of
HIGH and MEDIUM jobs. If there are no jobs with priority LOWEST ready to be started, then jobs with priority

6.1. Jobs 169

Vidispine REST APl Documentation, Release 5.x

HIGHEST or HIGH or MEDIUM or LOW will start, depending if there are jobs of those priorities ready to start, in that
specific order.

If there is no defined job pool with a priority threshold that matches lower priority jobs, then such jobs will not be
started. For example, to only let jobs with a priority of MEDIUM or higher to execute, remove the job pool with priority
threshold LOWEST from the example above. Then jobs of priority LOW and LOWEST will never run.

Jobs of priority IMMEDIATE are always started and therefore do not need to be defined by a pool.

6.1.3 Job problems

Jobs will enter the state WAITING if a recoverable problem has occurred. Depending on the problem the system might
resolve itself or require manual assistance, for example if the system is out of storage space.

A system with no job problems will report:

GET /job/problem HTTP/1.1
Content-Type: application/xml

<JobProblemListDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

A system where the transcoder is unreachable for some reason may report:

GET /job/problem HTTP/1.1
Content-Type: application/xml

<JobProblemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<problem>
<id>31532534</id>
<type>TranscoderOffline</type>
<job>VX-172716</job>
</problem>
</JobProblemListDocument>

There can be multiple jobs waiting for a problem to be resolved, for example, in case of transcoder or storage problems.
For JavaScript problems there will however be one problem per job, as the problem condition is defined by a step
specific for each job.

6.1.4 Job tasks

The action performed by a task can be implemented either as a method in a Java class or as a JavaScript. Using
JavaScript is recommended for all new applications.

POST /task-definition/ HTTP/1.1
Content-Type: application/xml

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>A custom JavaScript step</description>
<script><![CDATA[
// This script does nothing but fail the job
job.fatalFail ("Testing job failing");
]]></script>
<step>10000</step>
<dependency>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<jobType>PLACEHOLDER_IMPORT</jobType>

170 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

<critical>false</critical>
</task>
</TaskDefinitionListDocument>

Defining new tasks

See JavaScript tasks on how to create JavaScript tasks.

Task dependencies

The execution order is defined by the step numbers and dependencies of the steps. The dependency element
defines which steps a specific step depend on. There is also the parallelDependency element that defines the
dependencies that apply if the step is executing as a parallel step.

allPrevious =true | The step requires all previous step to finish, before it can start.
previous = true The step requires the previous step to finish, before it can start
step=N The step requires step number N to finish, before it can start

Visualizing tasks

In order to easily see the dependencies between steps for a particular job type, there is functionality to render the job
definition as a graph. In order to render the graph, the Graphviz (http://www.graphviz.org/) package is required.
6.1.5 Custom job types

It is possible to define custom job types. Each custom job type is defined with a name and an integer identifier. Both
of these must be unique. Task definitions can then be added to the job type, in the same way as described above.
Example

First we create the job type:

’ POST /task-definition/jobtype/MYCOMPANY CUSTOM JOB_TYPE?id=25000 HTTP/1.1

’<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

Then we can add task definitions to our new job type:

POST /task-definition/ HTTP/1.1
Content-Type: application/xml

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>A custom JavaScript step</description>
<script><![CDATA[
logger.log("My custom job is running!");
]]></script>
<step>100</step>
<dependency>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<jobType>MY_CUSTOM_JOB_TYPE</jobType>
<critical>false</critical>
</task>
</TaskDefinitionListDocument>

6.1. Jobs 171

http://www.graphviz.org/

Vidispine REST APl Documentation, Release 5.x

After this has been done, we can now run the job:

POST /job?type=MY_CUSTOM_ JOB_TYPE

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-29</jobId>
<user>admin</user><started>2016-05-17T12:38:22.9997Z</started>
<type>MY_CUSTOM_JOB_TYPE</type>
<status>READY</status>
<priority>MEDIUM</priority>

</JobDocument >

6.2 JavaScript tasks

A JavaScript task is created by including the JavaScript in the task definition document. To evaluate the script Vidispine
uses a JavaScript engine. A number of global variables are defined for the script to use, see Common JavaScript
functions.

In addition for task definitions, there is the job object.

6.2.1 The job object

The job object contains methods for reading and writing metadata for the job that is executing, and also for some job
control.

job.

getId()
Gets the id of the job that is executing.

job. log (description)
Logs a message related to the current job step.
Arguments
* description (string)— The message to log.
job.getData (key)
Gets the data for the given key.
Arguments
* key (string)— The key to use when getting the data.
job.setData (key, value)
Sets the data for the given key.
Arguments
* key (string)— The key to use when setting the data.
* value (object)—The value to insert. Primitive types will be converted to a string. Arrays
will be converted into a comma-separated string.
job.deleteData (key)
Removes the given key from the job data.
Arguments
* key (string)— The key to delete from job data.
job.fail (errorMessage)
Fails the current step, but the step will be retried (up to five times).
172 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

job.

job.

job.

job.

job.

job.

job.

job.

job.

Arguments

* errorMessage (string) — The error message, which will be used to set error cause on

the job.

fatalFail (errorMessage)
Fails the current step and job.

Arguments

* errorMessage (string) — The error message, which will be used to set error cause on

the job.
getUser ()
Gets the wuser of the job. It replaces the old way of getting the user name using
job.getData ("username").
getKeys ()

Returns all the keys from the job data.
New in version 4.16.

containsKey (key)
Checks if the job data contains the key.

Arguments
* key (string) — The key to check.
New in version 4.16.

getDataOrDefault (key, value)
Returns the value from the job data or the given default value.

Arguments

* key (string) — The key to use when getting the data.

* value (string)— The value to return if there is no job data set with the given key.

New in version 4.16.

getStepId()
Returns the current job step id.

New in version 5.0.

wait (reason)
Sets the job in WAITING state.

Arguments
* reason (string)— An explanation of what the job is waiting for.

wait (milliseconds)
Set Thread sleep

Arguments
* milliseconds (number)— The amount of milliseconds to sleep.

waitForJobs (reason, joblds[])
Sets the job in WAITING state until all jobs in joblds is finished.

New in version 5.4.

Arguments

6.2. JavaScript tasks

173

Vidispine REST APl Documentation, Release 5.x

* reason (string)— An explanation of what the job is waiting for.

* joblIds (string/[])— An array of job ids that the job is waiting for to finish.

6.2.2 Pausing job execution

A JavaScript job step can pause the execution of the job by calling job.wait (). This will set the job in the
WAITING job state and create a job problem of type JavascriptProblemn.

To determine if the job execution can be resumed, the script is run again every minute with the variable
checkProblem set to true. If the job should keep waiting, then job.wait () should be called again.

Waiting for other jobs

New in version 5.4.

If your job step needs to wait for another job to finish before continuing, the script can call job.waitForJobs ().
This will set the job in the WAITING job state and create a job problem of type WaitingForJobs. Once all the
jobs are finished this job step will be re-executed.

Using job.waitForJobs () can make job execution faster as the job problem will be resolved and the job marked
as READY once the the dependant jobs have finished.

Example

To have the job wait and later run in wait/check mode:

if (checkProblem) {
if (/% condition is fulfilled %/ ...) {
return;

}
// Call job.wait () to indicate that the job should wait more

// See note above
job.wait ("condition still not fulfilled");

} else {
// run step as normal

if (/% condition is not fulfilled */ ...) {
job.wait ("waiting for condition");
return;

}

// continue job execution

To have the job wait for other jobs to finish:

// Previous step started some jobs and stored as a comma separated list
let jobIds = job.getData('jobIds').split(',');

for (let i=0; i < JjobIds.length; i++) {
const job = api.path('job'").path(jobIds[i]) .get();
if (job.status !== 'FINISHED') {
// If we find a job that is not finished already, wait for all jobs to finish.
// Note that this will only happen once, during next invocation of the job,,
—~step

174 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

// all the jobs will be finished.
job.waitForJobs ('Waiting for jobs to finish...', jobIds);

}

// continue job execution

6.2.3 Vidinet job execution

Jobs can be submitted to Vidinet services, for execution or for cost estimates, using the Vidinet functions on the job
object.

job.vidinetdJob (type, instruction, settings)
Submits a job to Vidinet and sets the job in VIDINET_JOB state.

Arguments
* type (string) - The type of Vidinet resource to use.
* instruction (string)— The job instruction.
* settings (object) — A set of key/value pairs related to the job.

— item - The id of the item that the job relates to.

shape - The id of the shape that the job relates to. Optional. Overrides tag.

tag - The shape of the item that the job relates to. Defaultis original.

resource - The specific Vidinet resource to submit the job to.

job.vidinetCost (type, instruction, settings)
Request a cost estimate from Vidinet.

Arguments
* type (string) - The type of Vidinet resource to use.
* instruction (string)— The job instruction.

* settings (object) — A set of key/value pairs related to the job.

item - The id of the item that the job relates to.

shape - The id of the shape that the job relates to. Optional. Overrides tag.

tag - The shape of the item that the job relates to. Default is original.

resource - The specific Vidinet resource to submit the job to.
Returns A Future<CostEstimateType> (https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html)
that can be used to retrieve the estimate.
Example

To submit a job to a Vidinet service that is not natively supported:

var item = ...;
var instruction = "...";

job.vidinetJob ("TEST", instruction, {
item: itemId
1)

6.2. JavaScript tasks 175

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

Vidispine REST APl Documentation, Release 5.x

In case a cost estimate is wanted before submitting the job to Vidinet:

var item = ...;
var instruction = "...";
var settings = {

item: itemId

bi

if ("true".equals(job.getData ("estimate"))) {
var estimate = Jjob.vidinetCost ("TEST", instruction, settings);
var result = estimate.get(); // blocking call

var cost = result.getService().get (0).getCost();

job.setData ("app_estimated_cost", cost.getAmount ());
} else {

job.vidinetJob ("TEST", instruction, settings);

6.2.4 Example: Update item metadata on import

Start by adding a new task to the import job with the script to execute.

Note: If using curl, use ——data-binary instead of —d to make sure all new-line characters are kept in the script.

POST /task-definition/
Content-Type: application/xml

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>Updating item metadata using a JavaScript task</description>
<script><![CDATA[

]]></script>
<step>10000</step>
<dependency>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<jobType>PLACEHOLDER_IMPORT</jobType>
<critical>false</critical>
</task>
</TaskDefinitionListDocument>

// Retrieve the id of the item that is being imported
var itemId = Jjob.getData("itemId");
var shapeld = job.getData ("originalShapeId");

// Retrieve the shape information

var shape = api.path("item/"+itemId+"/shape/"+shapeld) .get ();
var video = shape.videoComponent.length;

var audio = shape.audioComponent.length;

// Build a document with the metadata to set
var metadata = {
"timespan": [

{

176 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

"start": "-INF",
"end": "+INF",
"field": [
{
"name": "title",
"value": [
{
"value": "Item with "+4+video+" video and "+audio+" audio tracks"

// Update the item metadata
var result api.path("item/"+itemId+"/metadata") .input (metadata) .put ();
var metadata result.item[0] .metadata;

6.2.5 Example: Update item metadata on import using XML

Scripts can also use ECMAScript for XML (E4X) to easily create and parse XML documents. Using E4X the above
script could be written as below. Note that the XML responses from Vidispine will automatically be parsed into E4X
XML objects instead of being returned as strings.

// Set the default XML namespace so that the Vidispine namespace does not have
// to be specified when retrieving properties or when building the metadata document
default xml namespace = "http://xml.vidispine.com/schema/vidispine";

// Retrieve the id of the item that is being imported
var itemId job.getData ("itemId") ;
var shapeld job.getData ("originalShapeId");

// Retrieve
var shape =
var video
var audio

// Build a d
var metadata
<timespan

the shape information
api.path("item/"+itemId+"/shape/"+shapeld) .dataType ("xml") .get ();
shape.videoComponent.length () ;

shape.audioComponent.length();

ocument with the metadata to set
<MetadataDocument>
start="-INF" end="+INEF">

<field>
<name>title</name>
<value>Item with {video} video and {audio} audio tracks</value>
</field>
</timespan>
</MetadataDocument>

// Update the item metadata
api.path("item/"+itemId+"/metadata") .input (metadata) .put ();
result.item[0] .metadata;

var result
var metadata

6.2. JavaScript tasks 177

Vidispine REST APl Documentation, Release 5.x

6.3 Task groups

Task groups can be used to control the transcoders that a specific job should use, or to control the number of concurrent
jobs running by job type. It may be expanded in the future to include not only jobs and transcoders, but also other
types of tasks and resources.

* A task group identifies a set of jobs and the resources available to those jobs.
* Jobs are identified by a criteria on the group.

* A job can belong to multiple groups, but only a single group for each type of resource. If a job satisfies the
criteria on multiple groups, then the job belongs to the group with the highest priority.

* A transcoder can belong to any number of groups.

* A job will only use resources from the group(s) that it belongs to.

6.3.1 Creating a task group

Task groups are referred to by name. Each group should specify a job criteria and a number of transcoders, and a
priority if needed.

PUT /task-group/imports
Content-Type: application/xml

<TaskGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<job>
<type>PLACEHOLDER_IMPORT</type>
</job>
<transcoder>
<id>Vvx-1</id>
</transcoder>
<transcoder>
<id>Vx-2</id>
</transcoder>
<priority>MEDIUM</priority>
</TaskGroupDocument>

6.3.2 Task group criteria

Task groups can have multiple criteria. A job must then satisfy them all to be considered being part of that group. The
selections in a criteria form a logical OR.

For example, to restrict jobs that are either imports or exports, and from the admin or bulk-import user, to transcoder
VX-1:

<TaskGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<job>
<type>PLACEHOLDER_IMPORT</type>
<type>EXPORT</type>
</job>
<job>
<user>admin</user>
<user>bulk-import</user>
</job>
<transcoder>
<id>Vvx-1</id>
</transcoder>
</TaskGroupDocument>

178 Chapter 6. Jobs and Task Definitions

Vidispine REST API Documentation, Release 5.x

This is evaluated as:

(type :PLACEHOLDER_IMPORT OR type:EXPORT)
AND
(user:admin OR user:bulk-import)

Job criteria
Jobs can be matched on:
* Priority - To include jobs with a certain priority.
* Type - To include jobs of a certain type.
 User - To include jobs created by a specific user.
* Group - To include jobs created by a user in a specific group.

* Data - To include jobs with certain data.

6.3.3 Task group priority

A job will use resources from the task group with the highest priority and a matching criteria. If two task groups have
the same priority then the groups are ordered by name in alphabetical order, and the first one is picked.

6.3.4 Task group concurrency limit
New in version 5.2.2.

By setting the maxConcurrency setting in a task group it’s possible to control the maximum number of concurrent
jobs for any matching job. If a job matches multiple task groups, the one with the highest priority and the lowest
maxConcurrency value will be effective.

For example, to specifically limit the amount of concurrent jobs of type EXPORT, the following task group can be
created:

PUT /task-group/export-job-limit
Content-Type: application/xml

<TaskGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<job>
<type>EXPORT</type>
</job>
<priority>MEDIUM</priority>
<maxConcurrency>3</maxConcurrency>
</TaskGroupDocument>

Other means to control the maximum number of concurrent jobs includes using job pools and the concurrentJobs
configuration property.

6.3.5 Job problems

If a job cannot run because the transcoders available to it are offline, then a transcoder offline problem will be created.
The problem will contain the name of the group and the job id(s).

This allows you to see which group/transcoder(s) a job is blocked on. For example:

GET /job/problem

6.3. Task groups 179

Vidispine REST APl Documentation, Release 5.x

<JobProblemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<problem>
<id>35113</id>
<type>TranscoderOffline</type>
<job>VX-115770</job>
<data>
<key>taskGroup</key>
<value>imports</value>
</data>
</problem>
</JobProblemListDocument>

180 Chapter 6. Jobs and Task Definitions

CHAPTER
SEVEN

NOTIFICATIONS

Notifications are sent from the system when predefined events occur. An example of such an event could be a job that
finishes. Examples of when this could be useful are:

 Getting a notification when a job finishes.
* Making sure the metadata input for a certain field is correct.
Notifications involve a quadruple:
1. The resource or entity to be notified about.
2. The event that should trigger the notification.
3. The action that should be taken when the notification is triggered.

4. Filters that further specifies the behavior of the trigger.

7.1 Resources
A number of different entity types support notifications. Below is a short description of the different entity types and
what events can trigger a notification:

» Items — notifications can trigger on item delete/create, metadata changes, shape changes and access control
changes.

* Collections — can trigger on creation/deletion, metadata changes and content changes.

* Jobs — can trigger on job create, update, finish, fail and stop.

* Groups — group notifications can trigger on group create, delete and modify.

¢ Storages — can trigger on storage create/delete, and on new files.

¢ Files — can trigger on group create, delete and modify.

* Quota — quota notifications can trigger on quota create, delete, and quota exceeded warnings.

* Document — can trigger on document create, delete and modify.

7.2 Actions

An action is what will be done when a notification is triggered. The action can either be to:
* Perform a HTTP request.
 Invoke a Java class method.

* Send a JMS message.

181

Vidispine REST APl Documentation, Release 5.x

» Execute a JavaScript.
* Send a message to Amazon SQS.
* Send a message to Amazon SNS.
The data included in the request or message will be multivalued key-value data identifying the event that has occurred.

An action can be sent either synchronous or asynchronous. In the case of a synchronous action the message will
be sent in the same thread as where the notification is triggered. And execution will only continue if the recipient
acknowledges and approves the message. In the asynchronous case the message will be sent in another thread and
execution will continue immediately.

For a full description of actions, refer to the API reference on Actions.

7.3 Triggers

A trigger is the event that will cause the notification to perform its action. Different triggers exist for different re-
sources. The trigger used determines what output that can be expected. Below an overview of available triggers can
be seen:

* Item triggers.
— Shapes
— Metadata
- ACLs
¢ Collection triggers
* Group triggers
* Job triggers
 Storage triggers
* File triggers
* Quota triggers
e Document triggers.
* Deletion lock triggers.
* Placeholder (null) triggers.

The placeholder trigger is simply the lack of a trigger-type. For a full description of triggers, refer to the API reference
on Triggers.

7.4 Job filtering
7.4.1 Job types

Filter criteria can be added to job notifications in order to filter which type of jobs they trigger on.

7.4.2 Job metadata

Either by string comparison or regular expressions.

182 Chapter 7. Notifications

Vidispine REST API Documentation, Release 5.x

7.4.3 Filters

Filters can be used to specify the trigger further. For example in the case of metadata, the notification can be filtered
to only trigger for certain values.

7.4. Job filtering 183

Vidispine REST APl Documentation, Release 5.x

184 Chapter 7. Notifications

CHAPTER
EIGHT

RESOURCES

Resources in Vidispine are components used for auxiliary storage or transformation. The two most commonly used
resource type are the thumbnail, which is used to store thumbnails, and t ranscoder, which points to instances
of the Vidispine transcoder.

8.1 Transcoders

When you import items the Vidispine transcoder will be used to detect the type of media that is being imported and,
of course, to transcode the media to any formats that you have requested.
The common operations performed by the transcoder are:

* Media shape deduction

* Transcoding

* Sequence rendering

Partial file extraction
¢ XMP extraction and rewrite

The Vidispine transcoder has a REST API that Vidispine uses to perform the above operations. This API is not
described in this document, as it typically should not be accessed directly.

8.1.1 Adding a transcoder

Add a transcoder by creating a new transcoder resource. The resource document should contain information on
how to reach the transcoder and what storages the transcoder has direct access to.

POST /resource/
Content-Type: application/xml

<?xml version="1.0"7?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<directAccess>
<filter>file:/srv/media/.x</filter>
</directAccess>
</transcoder>
</ResourceDocument>

Vidispine checks the status of transcoders continuously in the background. As such, if the configuration is correct you
will see that the transcoder shows up as online in a few seconds.

185

Vidispine REST APl Documentation, Release 5.x

GET /resource/VX-7

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VX-7</id>
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<directAccess>
<filter>file:/srv/media/.x</£filter>
</directAccess>
<state>ONLINE</state>
</transcoder>
</ResourceDocument>

The Vidispine installer will by default install and configure a transcoder in Vidispine for you, so this step is typically
not needed.

8.1.2 Using multiple transcoders

Depending on your license, you may be allowed to use more than one transcoder. To do so, simply add additional
transcoders as explained above. Vidispine will submit transcode jobs to the transcoder based on the current number of
jobs being processed by the transcoder.

Vidispine will use the transcoder with the least amount of work. If a transcoder goes offline then any transcode job
steps using that transcoder will fail and be retried using one of the online transcoders. If all transcoders are offline then
jobs will wait for one to become available.

Note: The clusterName property must be set if multiple Vidispine installations are to share a transcoder. Each
installation must have a unique cluster name. This applies regardless if the installations have the same site name or
not.

8.1.3 How transcoders perform jobs

A transcoder will perform a job as soon as it is received, and will not schedule jobs for later execution. Vidispine,
that is, the user of the transcoder is responsible for scheduling which jobs a transcoder should execute and when they
should be executed.

8.1.4 Transcoder job limit

The maxJob setting can be used to limit the number of Vidispine jobs that may use a specific transcoder at the same
time. If all transcoders are busy, jobs will be put on WAITING state, with a TranscoderBusy problem. The jobs
will restart as soon as any qualified transcoder becomes available again.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vx-7</id>
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<maxJob>5<maxJob>
</transcoder>
</ResourceDocument>

A Vidispine job typically triggers multiple transcoder jobs, e.g. shape deductions and transcodes, so in the above
case there may still be more than 5 running jobs on a transcoder. They will however all belong to at most 5 jobs in
Vidispine.

186 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

The above setting works for VSA transcoders as well. VSA users can also add t ranscoder .maxJob to one of the
agent configuration files. For example:

$ cat /etc/vidispine/agent.conf.d/transcoder.conf

transcoder.maxJob=5

8.1.5 The transcoder’s configuration file

The transcoder configuration file config.xml contains default settings for the transcoder and need typically not be
modified, as the settings can instead by configured in Vidispine.

Modify the transcoder file

On a Linux system, copy the file /opt/vidispine/transcoder/config.xml to
/etc/transcoder-config.xml. Then edit /etc/transcoder-config.xml. The file in /etc
takes precedence over the file in /opt/vidispine.

Modify the transcoder resource

On all operating systems, the transcoder configuration can be changed by adding configuration to the resource defini-
tion of the transcoder (Adding a transcoder).

Note that port of the transcoder cannot be changed in this fashion.

Modifying the transcoder configuration is this fashion takes precedence over the local configuration file and the global
transcoder configuration, see below.

Modify all transcoders

It is also possible to change the configuration of all transcoders, by setting the configuration property

transcoderDefaultConfiguration to the XML representation of the transcoder configuration.

Thumbnail settings

Note: The preferred way of changing the thumbnail and poster settings is by changing the appropriate values
in the TranscodePresetDocument in a shape tag. For example, by changing the thumbnailResolution and
thumbnailPeriod elements. The setting in shape tag have priority over the transcoder setting.

The thumbnailResolution element contains the default resolution of the thumbnails produced by the transcoder.

<a:thumbnailResolution>
<a:width>320</a:width>
<a:height>240</a:height>

</a:thumbnailResolution>

You can also change the thumbnailing frequency by changing thumbnailPeriod. For example, to thumbnail every
3 seconds:

<a:thumbnailPeriod>
<a:samples>3</a:samples>
<a:timeBase>
<a:numerator>1</a:numerator>
<a:denominator>1</a:denominator>
</a:timeBase>
</a:thumbnailPeriod>

8.1. Transcoders 187

Vidispine REST APl Documentation, Release 5.x

If the transcoder does not use a scene change detection plugin, the frequency defaults to once every 10 seconds.

StatsD settings
To have the transcoder send metrics to a StatsD server you can either:
 Enable StatsD using the API, see StatsD

» Update the transcoder configuration with the address and port of the StatsD server:

<a:statsd>
<a:destination>
<a:address>127.0.0.1</a:address>
<a:port>8125</a:port>
</a:destination>
<a:prefix>tl</a:prefix>
</a:statsd>

The prefix element configures the prefix to use for each metric. By default this is the transcoder.

Transcoder resources settings

Path to temporary storage

Controls where temporary files are stored. Default is /tmp on UNIX-like systems, or $TEMP % on Windows.

<a:tempPath>/mnt/largetemparea<a:tempPath>

Number of decoding threads

Controls the number of decoding threads. Defaults to 4 for I-frame-only formats. The actual number of threads used
depends on codec.

<a:decoderOfferThreads>8<a:decoderOfferThreads>

Number of encoding threads

Controls the number of encoding threads. Defaults to automatic setting. The actual number of threads used depends
on codec.

<a:encoderThreads>8<a:encoderThreads>

HTTP buffer sizes

Controls the size of HTTP reads and writes of the transcoder. dataBufferSize controls the maximum number of
read bytes in memory. Default is 100 MB. dataBufferWriteSize controls the maximum number of write bytes
in memory. Default is 100 MB. dataBufferFlushTime controls the number of seconds written bytes are stored
in memory before it is flushed. Default is 4 seconds.

For system that uses segment files and where the transcoder has enough memory, it is recommended to increase these
numbers, up to 10 times.

Image processing

To control the memory and disk usage used by the transcoder for image processing, use the <imagemagick>
element in the transcoder configuration. The most important settings are listed below, for a complete list, see

188 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

http://www.imagemagick.org/script/resources.php (under environment variables, used without the MAGICK__ prefix
in the transcoder configuration).

Maximum heap usage

<a:imagemagick>
<a:key>MEMORY_LIMIT</a:key>
<a:value>1GB</a:value>

</a:imagemagick>

Temporary work area

<a:imagemagick>
<a:key>TEMPORARY_PATH</a:key>
<a:value>/var/tmp</a:value>

</a:imagemagick>

The default value is the value set by the general transcoder temporary path, see above. It is recommended that the
tempPath setting is used, rather than the imagemagick one.

8.1.6 Operations overview

Zeroconf transcoders
The following is done to remove the need to configure the transcoders directly:

* Vidispine pushes its own license to the transcoder, so that each transcoder does not need a license file of their
own.

* The transcoder returns the IP address from where the license was pushed, that is, the IP address of the application
server, removing the need for explicitly configuring the reverse address, that is, where the transcoder can reach
Vidispine, in most cases.

* In addition, Vidispine generates temporary pre-authorized URIs that are used by the transcoder. This removes
the need for entering any application server information in the transcoder configuration file.

Reverse address and NAT

The reverse address does not work if there is NAT or other port forwarding mechanisms between the application server
and the transcoder. If so, the address to VS-EA can be overridden in the definition for the transcoder by setting the
<reverseAddress> element.

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<reverseAddress>vs.example.com</reverseAddress>
</transcoder>
</ResourceDocument>

The rules for how the address to Vidispine is determined are as follows:
1. If the configuration property apiNoauthUr1i is set, it is used for all transcoders.

2. If the configuration property apiNoauthPort is set, it is used for together with the detected or manually set
reverse address.

8.1. Transcoders 189

http://www.imagemagick.org/script/resources.php

Vidispine REST APl Documentation, Release 5.x

Transcoder’s access to media

By default, the transcoder accesses non-file-schema media through the application server. This has several advantages:
* The same user is used for all file access.
* Possibility for support for extended file attributes and permissions.
* Support for other file systems (URI schemes).

Streaming the media puts some extra load on the application server. Some tuning might be necessary.

The transcoder resource in Vidispine can be set up to access files directly. By adding a directAccess element to
the transcoder resource, Vidispine will let the transcoder access the media directly. If no directAccess elements
are present, an implicit

<directAccess>
<filter>file:.x</filter>
</directAccess>

is added. In order to tell Vidispine that all files should go via the application server, add an

<directAccess>

<filter>NO_MATCH</filter> <!-— dummy regular expression that does not match,,
—anything >
</directAccess>

Growing files

For all file systems that supports read-while-write, and for container formats that are built for streaming (e.g. MXF),
growing file is supported when streamed through the application server. If growing files is required to local files with
the file scheme, a directAccess/NO_MATCH element as per above must be added to the resource configuration.

8.2 Transcoder discovery

Vidispine can automatically discover transcoders using either HTTP or DNS. This makes it possible to use Consul
(http://consul.io/), Amazon Route 53 (http://aws.amazon.com/route53/) or any DNS or HTTP server to track the avail-
able transcoders, with custom health checks and rules to determine which transcoders should be used by Vidispine for
example.

You could also configure Vidispine instances to read transcoders from another instance, as an easy way to manage a
set of transcoders.

8.2.1 Adding a transcoder directory

To have Vidispine discover transcoders, add a transcoder resource to Vidispine with the type set to DIRECTORY.

POST /resource/
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<type>DIRECTORY</type>
<url>http://service-user:oeHie2Ye@vsl.example.com:8080/API/resource/transcoder</
—url>
</transcoder>
</ResourceDocument>

190 Chapter 8. Resources

http://consul.io/
http://aws.amazon.com/route53/

Vidispine REST API Documentation, Release 5.x

Once the transcoders have been retrieved, they will show up as nested transcoders under the transcoder resource.

GET /resource/VX-24

<?xml version="1.0"7?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vx-24</id>
<transcoder>
<type>DIRECTORY</type>
<url>http://service-user:oeHie2Ye@vsl.example.com:8080/API/resource/transcoder</
—url>
<state>ONLINE</state>
<transcoder>
<url>http://tl.transcoder.example.com:8888/</url>
<version>4.4</version>
<reverseAddressDetected>172.17.42.1</reverseAddressDetected>
<state>ONLINE</state>
</transcoder>
<transcoder>
<url>http://t2.transcoder.example.com:8888/</url>
<state>OFFLINE</state>
</transcoder>
</transcoder>
</ResourceDocument>

Note: If the HTTP/DNS server is offline then the known set of transcoders will be kept and used until the server
comes online again and the set of transcoders is updated.

8.2.2 Supported URIs
http:
Syntax http://[{user}:{password}@] {host}/{path}
Response application/xml - ResourceListDocument
The HTTP server should return a list with all available transcoders.
dns:
Syntax dns: [//{dnsServer}/] {domainName}

Vidispine will perform a SRV lookup to retrieve the host and port of all available transcoders. SRV lookups will
be done against:

e {domainName }
e transcoder._http. {domainName}

e transcoder._https.{domainName}

RFC 2782 names

If the domain name already has the format of a RFC 2782 style SRV resource record
(_service._protocol.name), then a single SRV lookup will be done.

If the service or protocol name is https then HTTPS will be used instead of HTTP to connect to the discov-
ered transcoders. For example, these SRV records would enable secure communication using HTTPS between
Vidispine and transcoders:

8.2. Transcoder discovery 191

Vidispine REST APl Documentation, Release 5.x

e transcoder._https.example.com
e https._tcp.transcoder.example.com

Changed in version 4.15: Support for RFC 2782 style lookups and HTTPS was added.

8.3 External transcoders
Using the external transcoder support in Vidispine it is possible to use transcoders from other companies, or to perform
transcodes in other ways. This is done using watch folders.

» With transcoders that support watch folders directly, it’s simply a matter of configuring both Vidispine and the
external transcoder to use the same watch folder.

* Transcoders that do not support watch folders can still be integrated with by writing a service that monitors the
watch folder and sends transcode request to the external transcoder accordingly.

Important:
* It is not possible to transcode using the Vidispine transcoder and an external transcoder at the same time.

* Itis only possible to transcode using one external transcoder shape tag at the time.

Any method supported by Vidispine can be specified as the source or destination, meaning that the watch folders do
not need to be local.

8.3.1 How it works

When starting an import or transcode job, Vidispine will check if the given shape tag is defined to be handled by an
external transcoder. If it is, then the source file (e.g. the original essence of the item) will be copied to the transcoder’s
watch folder (e.g. <source> the external-transcoder ResourceDocument); then the job waits for one or more files
to appear in the destination folder (e.g. <destination> in ResourceDocument), and perform the rest steps. Note:
only the transcode step is handled by the external transcoder.

Settings

Filename pattern It is mandatory to define a filename pattern (a.k.a <regex>) in the external transcoder resource
to control what files the job should look for. In order to support multiple transcodes at the same time, the regex
will be prefixed using the file name of the essence automatically. That is:

If the original essence file name is VX-100, and the regex is . xoutput . », then Vidispine will look for files
matching \QVX-100\E. xoutput. *.

Timeout The output file must appear in the destination folder within this timeout, or the transcode step will be marked
as failed. The default timeout is 30 seconds.

Interval How frequently the destination folder should be checked for new or updated files. The default interval is 5
seconds.

Checks How many times an output file must remain unchanged for the file to be considered completely written. By
default files must remain unchanged for 3 checks.
8.3.2 Adding an external transcoder

Add an external transcoder by creating an externalTranscoder resource using POST /resource.

192 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

POST /resource/externalTranscoder/
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<externalTranscoder>
<source>file:///mnt/external-transcoder/source/</source>
<destination>file:///mnt/external-transcoder/destination/</destination>
<shapeTag>external-format</shapeTag>
<timeout>60000</timeout>
<regex>.xdemo.*</regex> <!/-— Since Vidispine 4.0 ——>
</externalTranscoder>
</ResourceDocument>

8.3.3 Using an external transcoder

Before starting a transcode, make sure the shape tag in the example, has been defined in an external transcoder resource.

POST /shape-tag/external-format
Content-Type: application/xml

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio></audio>
<video></video>

</TranscodePresetDocument>

The external transcoder is supported in AUTO_IMPORT and at the following requests
e POST /import
* POST /import/raw
* POST /item/ (item—-id) /transcode

* POST /item/ (item-1id)/shape/ (shape-id)/transcode

8.4 Thumbnail resources

A thumbnail resource defines a location where the thumbnails will be stored. For details how the thumbnails are stored
and for the supported location types see How thumbnails are saved on disk.

8.4.1 Adding a thumbnail resource

Add a thumbnail resource using POST /resource.

POST /resource
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<thumbnail>
<path>file:///srv/thumbnails/</path>
</thumbnail>
</ResourceDocument>

8.4. Thumbnail resources 193

Vidispine REST APl Documentation, Release 5.x

8.4.2 Reading thumbnails

The thumbnails in that directory will then be available from the API as described on Thumbnail resource handling.
For example, all thumbnails can be listed using GET /thumbnail/ (resource-id).

GET /thumbnail/VX-2

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>vx-1</uri>
<uri>vx-3</uri>
<uri>vx-4</uri>
<uri>vx-7</uri>
</URIListDocument>

However, you would typically not access thumbnails from that resource directly. Instead, fetch thumbnails for an item
using GET /item/ (item—-id)/thumbnailresource orusing the thumbnail content parameter.

GET /item/VX-7/thumbnailresource

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<uri>http://localhost:8080/API/thumbnail /VX-1/VX-7;version=0</uri>
</URIListDocument>

GET http://localhost:8080/API/thumbnail/VX-1/VX-7;version=0

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>0@PAL</uri>

</URIListDocument>

8.4.3 Thumbnail resource permissions
A thumbnail resource can be made read-only or read-protected, for example:

* When migrating thumbnails from one location to another; to have new thumbnails written to one resource but
old thumbnails still read from another resource.

* As read-protected, in case the disk where thumbnails are stored needs to be taken offline. VS will then avoid
serving thumbnails from that resource.

This is done using the mode element.

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<thumbnail>
<path>file:///srv/thumbnails/</path>
<mode>NONE</mode>
</thumbnail>
</ResourceDocument>

Allowed values are:
e READ_WRITE - full access (default)
* READ - read-only

* NONE - no access.

194 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

8.4.4 How thumbnails are saved on disk
The thumbnails can be stored either in a database form or as one file per thumbnails.
Thumbnails are stored in the resolution and format as requested when the thumbnails were created, and it’s not possible
to for example request a thumbnail as a PNG if it has previously been created as a JPEG.
Database
The thumbnail path as specified in the ResourceDocument should have the format
 path (e.g. /srv/media/thumbnails/), or
 file URI (e.g. file:///src/media/thumbnails/)
Thumbnails are stored in a separate directory and database - one for each item. Vidispine will automatically migrate
the databases during runtime if necessary, so no special action is required when updating Vidispine to a newer version
or when restoring an old thumbnail backup on a newer system.
One file per thumbnail
The thumbnail path as specified in the ResourceDocument should have the format
e URI with the direct+ prefix (e.g. direct+file:///src/media/thumbnails/

All URIs supported as Storage method URIs are supported.

Using a tree structure for thumbnails
Putting all files in the same directory of a storage can cause degraded performance on some file systems.

By setting the configuration property t humbnailHierarchy, the naming convention for the thumbnails’ folders
is changed to site-id — numberl / number2. The number set in thumbnailHierarchy controls the size of
number?2.

The thumbnailHierarchy works in the same way as £1 leHierarchy does for files. See Using a tree structure
Jor files for an example. The property works both for the database thumbnail storage and the direct thumbnail storage.

Warning: Changing the t humbnailHierarchy property will cause old thumbnails to be lost. If you need
to change the value on a system in production, please contact Vidispine.

8.5 Vidispine Server Agent

The Vidispine Server Agent, VSA, is a daemon process running on servers connecting to a Vidispine Server, VS. VSA
is composed of a Vidispine Transcoder and the VSA supervisor.

8.5.1 How to install VSA

Prerequisites

* A running VS instance, version 4.4 or newer

* A server running Ubuntu 14.04 or higher, 64-bit, or CentOS 6.5 or higher, 64-bit

8.5. Vidispine Server Agent 195

Vidispine REST APl Documentation, Release 5.x

Installation

Add the Vidispine repository according to the documentation on repository (http://repo.vidispine.com/). Then you can
install and start VSA. With Ubuntu/Debian:

’$ sudo apt-get install vidispine-agent vidispine-agent-tools

With CentOS/RedHat:

’$ sudo yum install vidispine-agent vidispine-agent-tools

After that, the agent can be connected to Vidispine server.

8.5.2 Connecting to Vidispine

The agent can then be connected either with or without establishing an SSH tunnel to Vidispine server. The latter
should be used if an encrypted network connection has already been established to Vidispine server, or if the server
and the agent runs within the same network.

» Connecting with SSH tunnel

* Connecting without SSH tunnel

Connecting with SSH tunnel

The configuration files are located in /etc/vidispine/. Configuration can be stored in either the file
agent .conf in this directory, or in files in the subdirectory agent .conf.d. It is recommended that a file is
created in the agent . conf . d directory. Specifically, there are two setting that has to be set: the connection to VS,
and the unique name of the VSA server. The first one you will get from the Vidispine instance.

1. Enable the Vidispine VSA port, by adding this to the server. yaml file (change the port number as necessary).
The server will need to restart for any changes to take effect.

vsaconnection:
bindPort: 8183

Note: This step is new in Vidispine 4.6.

2. On the Vidispine instance, install the vidispine-tools package and run

$ sudo vidispine-admin vsa-add-node

Note: In Vidispine 4.6, the command has changed to vsa—-add-node. With the new vsa-add-node command,
one VSA can connect to multiple vidispine-servers.

3. Fill in the user name, password and IP address. Enter the unique name, but you can leave the UUID empty.
4. Now, on the VSA server, add this information to /etc/vidispine/agent.conf.d/connection.

5. Start VSA:

$ sudo service vidispine-agent start
$ sudo service transcoder start

6. Wait 30 seconds. Now verify that it is connected:

196 Chapter 8. Resources

http://repo.vidispine.com/

Vidispine REST API Documentation, Release 5.x

$ sudo vidispine-agent-admin status

Agent, transcoder and Vidispine should all be ONLINE.

Connecting without SSH tunnel

1. Create afile /etc/vidispine/agent.conf.d/custom.conf with content like:

ame=admin

{iogYWRtawWé=
“tVSURI=http://172.17.0.7:8080/
2URI=http://172.17.0.8:8090/

* userName: Vidispine user name.

* password: Base64 encoded value of a »*« prefixed password. For example, the value should be the
result of echo -n xxxadmin | base64, if the password is admin.

* directVSURI: the address VSA uses to connect to Vidispine server.
* vsaURI: the address that can be used by Vidispine server to connect to VSA

2. Restart VSA:

’$ sudo service vidispine-agent restart

3. Wait 30 seconds. Now verify that it is connected:

’$ sudo vidispine—agent-admin status

Agent, transcoder and Vidispine should all be ONLINE.
4. Also, the VSA should listed under the server:

’$ curl -X GET -uadmin:admin http://localhost:8080/API/vxa

8.5.3 Adding a share

On the VSA, run the following command:

$ sudo vidispine-agent-admin add-local-share

This will add a share in VSA, and create a storage in VS. You can verify this by listing the storages (List all storages).
The storage is listed with a method that has a vxa: URI scheme. The UUID (server part) of the URI matches the
UUID from vidispine—agent—admin status.

Warning: If the share is removed from the VSA, the storage will be automatically deleted from VS, including all
file information (but not the files themselves). In order to keep the storage, e.g., if the storage is moved from one
VSA to another, remove the vxaId metadata field from the storage.

Enable write access
When a new share is added, the storage method is marked as read-only. To enable writing to the share:
¢ set the write field of the method to true, and

* change the storage type to LOCAL (meaning it can be a target for all file operations)

8.5. Vidispine Server Agent 197

Vidispine REST APl Documentation, Release 5.x

Associate many VSAs to one storage

It is possible to have several VSA nodes serving one shared file system. This can be used for increasing transcoding
capability or to generated redundancy.

1. Add the share individually on all VSAs (see above). This will generate as many storages as there are VSAs.
2. Now copy the storage methods from all but the first storage to the first storage.
3. On the first storage, remove the vxaId storage metadata (see above).

4. Remove all but the first storage.

8.5.4 VSA and S3 credentials

A VSA transcoder can be given direct access to S3 storages, meaning the agent will access the files directly without
them being proxied by the main server. If the configuration property useS3Proxy is set to t rue, pre-signed URLs
will be used for agents to read S3 objects. If itis set to false, orif itis a WRITE operation, AWS credentials will be
sent to agents.

The type of AWS credentials being sent to the agents can be controlled by the configuration property
s3CredentialType:

* secretkey: The access key and the secret access key configured in the S3 storage URI will be sent to the
agent.

* temporary: The AWS Security Token Service (STS) will be used to generate temporary credentials to send
to the agents. The duration of the credentials is controlled by st sCredentialDuration. You can set
st sRegion to control in which region Vidispine server will call the AWS Security Token Service (STS) APIL.

e none: No credentials will be sent to the agent. The agent then needs to rely on a local
AwsCredentials.properties file, or an IAM role on the instance to access S3 objects.

There is also a configuration entry called s3CredentialType available in the agent . conf, that can be used to
configure this behavior on a per-agent basis.

The final effective credential type will be the min of Server s3CredentialType and Agent s3CredentialType. And the
order of the values is secretkey > temporary > none.

For example, no credentials will be sent to the agent, if an agent has the following configuration:

s3CredentialType=none

and the server has:

<property lastChange="2014-07-14T14:55:15.432+02:00">
<key>s3CredentialType</key>
<value>temporary</value>

</property>

Note: For an older agent to work with 4.14 server, the credential type on the server side has to be set to either
secretkey or none.

8.5.5 Agent properties

Configuration properties that can be used in the agent configuration file. Upon start, configuration is read from
/etc/vidispine/agent.conf and any files in the directory /etc/vidispine/agent.conf.d.

198 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

Basic

vxaName The name the VSA is using to register itself. Optional but recommended. With a name set, the name can
be used instead of UUID in vxa: // URIs.

operationMode Should always be VSA-VS.
uuid The UUID of the VSA. Must be unique and follow the UUID syntax.

Connection
agentGroup String that is used to signal to Vidispine server that all agents in the same group can reach each other.

bindAddressV4/bindAddressVé The network address that the agent should accept connections on. If not set,
127.0.0.1 is used.

vxaPort The network port that the agent should listen on. Default 8090.

externalUri URI that the agent can be reached at. For example: http://10.0.0.20:8090/,
https://vsa.example.com/.

connectionString, connectionStringl, connectionString2... How the VSA should connect Vidi-
Core. Generated by vidispine—-agent-admin.

directVSURI, directVSURI1, directVSURI2 If VSA can connect directly to VidiCore (without secure tun-
nel), this is the URI to VidiCore (from VSA).

vsaURI If VidiCore can connect directly to VSA (without secure tunnel), this is the URI to VSA (from VidiCore).
Please note that you must use https:// as scheme if you have enabled HTTPS using t 1s=true.

userName User name used to connect to VidiCore. Not recommended. Use vidispine-agent-admin to
create a secure connection instead.

password Password used to connect to VidiCore. Not recommended. Use vidispine—-agent—-admin to create
a secure connection instead.

sshProxy Proxy (http, socks4, socks5) used for SSH connection. Not required for new connections created by
vidispine—-agent—-admin.

fingerPrint SSH fingerprint of SSH server on VidiCore side. Connection will fail if fingerPrint is set and no
matching. Default is that connection is allowed, but a warning is emitted in the log file.

pingInterval How often the VSA should contact VidiCore. Default is 4 seconds, but can be increased to lower
traffic. Recommended: 60.

restSelectorRunners The number of threads that will be available to serve incoming requests. The selector
runner will delegate the actual work that should be done to a worker thread.

New in version 5.3.

restWorkerThreads The number of worker threads that are available. These threads carry out the actual work
in the VSA. For example they handle transfer jobs performed by the VSA. They typically also deliver results of
requests sent to the VSA. However, see also transfer section below.

New in version 5.3.

tls Setto true to enable HTTPS for the VSA. This will require a PKCS12 keystore file containing a certificate
associated with the domain used to access VSA. Example: (CN=the-domainname)

New in version 21.4.

pkcsl2File The location of the PKCS12 file to wuse for enabling HTTPS. For example,
/directory/of/keystore.pl2 This must be set if t 1s is set to true.

New in version 21.4.

8.5. Vidispine Server Agent 199

Vidispine REST APl Documentation, Release 5.x

pkcsl2Password The password for the PKCS12 keystore. This must be set if t 1s is set to true.
New in version 21.4.

pkcsl2CertificateAlias (Optional) The alias of the certificate to use for the VSA. If this is not de-
fined the VSA will try to use the first found certificate in the PKCS12 keystore file. Example:
pkcsl2CertificateAlias=TheAlias

New in version 21.4.

Logging

logLevel Overall log level. Accepted values are ALL, TRACE, DERUG, INFO (default), WARN, ERROR, FATAL,
OFF.

logLevel.(class or package) Class or package-specific logging.

Transfer jobs

transferThreadCount Use multiple threads for a single transfer. Can speed up S3 transfers significantly. De-
fault is 1 (single thread).

New in version 5.4.
transferBufferSize Size of transfer chunk used in transfer jobs. Default is 10000000 (10 MB).
New in version 5.4.

checkTransferDestination If set, VSA will wait up to given number of seconds to appear in file listings
before reporting the transfer as complete.

readTransferDestination If set to true (which is the default), VSA verify a transfer by reading the first byte
of the destination before reporting the transfer as complete.
Hash compute jobs

hashThreadCount Use multiple threads for reading a file during hash computation. The actual computation is
still done in one thread. Default is 1 (single thread).

New in version 5.4.

Transcoder jobs

transcoder.maxJob The sets the maximum transcoder jobs the VSA will process. This is done by setting the
maxJob element of the transcoder resource in VidiCore.

transcoder.directAccess Controls if the VSA can access the input files directly. Note that there are two
level of media access proxying for transcode jobs. VidiCore will proxy all access for the VSA which does not
fit the directAccess filter, if the directAccess is set. VSA will proxy media access for the VidiCoder for URIs
that are not http or file.

transcoder.port How the VSA reaches the transcoder. Should be 88388 unless the transcoder listens to another
port.

Storage access

s3... All S3 configurations listed in Storage and file are available as VSA configuration.

ftppool .maxtotal Maximum number of entries in FTP connection pool. Default is -1 (unlimited).

ftppool.maxtotalperkey Maximum number of entries in FTP connection pool per key (scheme/host/port).
Default is -1 (unlimited).

200 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

ftppool.minidleperkey Keep at least this number of connections idle. Default is O.

ftppool.timebetweenevictionrunsmillis Time between when idle connections are checked for closing,
in milliseconds. Default is 30000 (30 seconds).

ftppool.minevictableidletimemillis The minimum time an connection is idle before it can be closed,
in milliseconds. Default is 60000 (60 seconds).

Resource tags

resourceTag.<name> = <value> Resource tags can be configured on a VSA, which then will be
available on the VSA entity in VidiCore API. <name> must match the following regex pattern:
[A-Za-z] [A—-Za—-z—-]*[A-Za—-z].

Example: resourceTag.location = Stockholm

New in version 22.2.

8.5.6 Direct transfers between VSAs
New in version 5.0.

When Vidispine server copies or moves a file between two agent storages, the default is for Vidispine server to read
the file from one agent and then write it to the other agent. In the case where the agents actually are able to reach each
other, this is obviously quite inefficient, since the data is streamed through Vidispine server.

To let Vidispine server send a transfer job to the agent which hosts the source file, which then sends the file directly to
the receiving agent. To enable this you configure both agents with the same value of the agent property agentGroup.

The destination URI, where the agent will try to send its file, will as default be the uri of the receiving agent, as seen
at GET /vxa/ (uuid). For example:

<VXADocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uuid>aada7ef6-087¢c-4003-82fb-983c0e91d9c3</uuid>
<name>Test agent</name>
<uri>http://localhost:57893/</uri>
<agentGroup>office-vsa-group</agentGroup>

</VXADocument>

However, in many cases that URI might not be a URI that the first agent can reach, for example if the agent is connected
through SSH (then the URI typically is something like: http://localhost:5678/). To overcome this the agents can set
the agent property externalUri to an URI that the agent can be reached at. This may be used in conjunction with
the property: bindAddressV4 and/or bindAddressVeé.

Examples

Two agents are one the same network and connect directly to Vidispine server, we only need to set agentGroup in
each agents configuration file to the same value:

uuid=aad4a7ef6-087c-4003-82fb-983c0e91d9c3
agentGroup=office-vsa-group
uuid=e5db8d36-470c-44£fa-8499-967537ddaeba
agentGroup=office-vsa-group

8.5. Vidispine Server Agent 201

http://localhost:5678/

Vidispine REST APl Documentation, Release 5.x

One agent is connecting to Vidispine server using SSH, we then need to set the externalUri property for that
agent:

uuid=aada7ef6-087c-4003-82fb-983c0e91d9c3
agentGroup=office-vsa-group

uuid=e5db8d36-470c-44fa-8499-967537ddaeba
agentGroup=office-vsa—-group
externalUri=http://10.0.0.23:8090/

8.5.7 Port forwarding service
New in version 5.1.

It is possible to set up a port forward service, using the already existing connection to Vidispine, for the VSA.
This will create a secure channel using remote forwarding. This is done by specifying an ID for the ser-
vice and the URL and port that this service will try to reach. The agent needs to be configured as such;
port.forward.<id>=<scheme>://<host>:<port> where <id> needs to be an integer. It is possible for
a single VSA to have multiple port forwarding services enabled.

For example:

port.forward.l=1ldap://someldapserver.com:389
port.forward.2=1daps://anotherldapserver.com: 636

after the VSA have connected to Vidispine, the vxa resource will report:

GET /vxa HTTP/1.1

<VXAListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<vxa>
<uuid>e5817fdb-9deb-4£25-a689-72349a78407a</uuid>
<forwardService>
<id>1</id>
<uri>ldap://examplevshost:40275</uri>
</forwardService>
<forwardService>
<id>2</id>
<uri>ldaps://examplevshost:43741</uri>
</forwardService>
</vxa>

</VXAListDocument>

The example above would be port forwarding for LDAP authentication.
New in version 21.3.

For a HTTP connection via VSA, it is recommended to use the VSA as a HTTP proxy instead of forwarding individual
ports. For more information about this, see Proxying HTTP connection via a VSA.

8.5.8 Setting up VSA to use HTTPS

New in version 21.4.

202 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

It is possible to make VSA use HTTPS instead of HTTP by enabling t 1s=true in its configuration. When this is
enabled The VSA will try to load the PKCS12 keystore/archive file definied using pkcs12File and the password
definied using pkcs12Password. When VSA is loading the PKCS12 there is an option to select which certificate
to use by setting the pkcsl2CertificateAlias to the alias of that certificate. Also worth noting is that if your
VSA is configured for direct access using vsaURT this must also be updated to use https:// as scheme.

ile=/directory/of/keystore.pl2
“d=thekeystorepassword
pkecsl2CertificateAlias=thealiasofthecertificate

Example of creating a pkcs12 keystore/archive:

openssl req -x509 -newkey rsa:4096 -keyout myPrivateKey.pem -out myCertificate.crt -
—days 3650 —-nodes

openssl pkcsl2 —-export -out keyStore.pl2 -inkey myPrivateKey.pem —-in myCertificate.
‘—icrt\ to

8.6 Vidinet services

Vidinet services can be registered as resources and then be used directly by Vidispine, if supported natively, or from
custom JavaScript steps.

8.6.1 Adding a service

Add a Vidinet service by creating a new vidinet resource. The resource document may differ for different services,
so please refer to the vidinet dashboard (http://www.vidinet.net/) for more information on how the service should be
defined.

POST /resource/
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<vidinet>
<url>http://transcoder.example.com:8888/</url>
<endpoint>http://transcoder.example.com:8888/</endpoint>
<type>TRANSCODER</type>
</vidinet>
</ResourceDocument>

Vidispine checks the status of services continuously in the background. As such, if the configuration is correct you
will see that the transcoder shows up as ONLINE in a few seconds.

GET /resource/vidinet/VX-8

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VXx-8</id>
<vidinet>
<url>http://transcoder.example.com:8888/</url>
<endpoint>http://transcoder.example.com:8888/</endpoint>
<type>TRANSCODER</type>
<state>ONLINE</state>
</vidinet>
</ResourceDocument>

8.6. Vidinet services 203

http://www.vidinet.net/

Vidispine REST APl Documentation, Release 5.x

8.6.2 Configuring a service
New in version 21.3.

Some VidiNet services require configuration before they can be used. Such as service specific metadata-fields, shape-
tags or task definitions. The required configuration can be applied automatically by invoking the configure endpoint
of the VidiNet resource. Invoking the endpoint will pull the configuration from VidiNet and apply it. A pre-check can
be performed to inspect what will happen before applying the actual configuration:

GET /resource/vidinet/VX-1/configuration/pre-check
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ServiceConfigurationResultDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<serviceName>MyVidiNetService</serviceName>
<serviceld>bac7d4ac-69a8-4b52-b421-79f4dfb3177£f</serviceld>
<configurationVersion>1.0.0</configurationVersion>
<preCheck>true</preCheck>
<executedSteps>
<order>1</order>
<description>Create/Update metadata-field: vidinet_service_metadata_field</
—description>
<resource>/metadata-field/vidinet_service_metadata_field</resource>
<result>The API call will be executed.</result>
<success>true</success>
</executedSteps>
</ServiceConfigurationResultDocument>

After inspecting the results of the pre-check, the configuration can be applied with:

PUT /resource/vidinet/VX-1/configuration
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ServiceConfigurationResultDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<serviceName>MyVidiNetService</serviceName>
<serviceld>bac7d4ac-69a8-4b52-b421-79f4dfb3177f</serviceld>
<configurationVersion>1.0.0</configurationVersion>
<preCheck>false</preCheck>
<executedSteps>
<order>1</order>
<description>Create/Update metadata-field: vidinet_service_metadata_field</
—description>
<resource>/metadata-field/vidinet_service_metadata_field</resource>
<result>The API call was executed successfully.</result>
<success>true</success>
</executedSteps>
</ServiceConfigurationResultDocument>

8.6.3 Import using Vidinet

When importing files the import job uses the Vidispine transcoder to detect the type of media that is being imported,
and if requested, to transcode the imported media.

To use Vidinet transcoder service instead of a local transcoder on import, specify the Vidinet TRANSCODER resource
when initiating the import. For example:

204 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

POST /import?uri=file:///srv/testdata/sample.mov&tag=__mpd&resourceId=VX-8

After the file has been transferred to a storage, the file will be media checked and transcoded using Vidinet. Once a
media check or transcode has been requested from Vidinet, the state of the job will change to VIDINET_JOB, and
the job will no longer occupy a job slot, until Vidinet has completed and the job will resume.

Make sure that files are imported to or exist on a storage that is compatible with the Vidinet service in question. This
is typically either an S3 bucket or an Azure blob storage, see the Vidinet service documentation for more detail.

8.6.4 Transcoding using Vidinet

If a Vidinet TRANSCODER resource is specified when initiating an item transcode, then the transcode will be performed
using that Vidinet service. For example:

POST /item/VX-74/transcode?tag=__mp4&resourceId=VX-8

The transcode job will execute as normal, but the transcode will be handed off to Vidinet instead of being sent to a
local transcoder. Once this happens the state of the job will change to VIDINET_JOB, and no longer occupy a job
slot, until Vidinet has completed the transcode.

Cost estimation

To retrieve the estimated cost of performing the above transcode using Vidinet, the cost API can be used. Simply
prefix the path with cost / and execute the request:

POST /cost/item/VX-74/transcode?tag=__mp4&resourceId=VX-8

<CostEstimateDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>dGVzda==</id>
<url>http://localhost:8080/API/cost/estimate/dGVzdA==</url>
</CostEstimateDocument>

The estimate may not be immediately available, in which case the estimate will be shown as pending.

GET http://localhost:8080/API/cost/estimate/dGVzdA==

<CostEstimateDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>dGVzdA==</id>
<url>http://localhost:8080/API/cost/estimate/dGVzdA==</url>
<state>PENDING</state>
<service>
<resource>VX-8</resource>
<type>TRANSCODER</type>
<state>ONLINE</state>
</service>
</CostEstimateDocument>

Once the cost has been estimated:

GET http://localhost:8080/API/cost/estimate/dGVzdA==

<CostEstimateDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>dGVzdA==</id>
<url>http://localhost:8080/API/cost/estimate/dGVzdA==</url>
<state>FINISHED</state>
<service>

8.6. Vidinet services 205

Vidispine REST APl Documentation, Release 5.x

<resource>VX-8</resource>
<type>TRANSCODER</type>
<state>ONLINE</state>
<cost unit="USD">1.2</cost>
</service>
</CostEstimateDocument>

8.6.5 Quality control using Vidinet

Quality control using Vidinet services can be performed by specifying a Vidinet QC resource when starting a shape
analysis job. For more information on how to analyze using a Vidinet service, please refer to the Vidinet service
documentation.

POST /item/VX-74/shape/VX-79/analyze?resourceId=VX-3&jobmetadata=template%3DQuality
—%20Test
Content-Type: application/xml

<AnalyzeJobDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-345</jobId>
<user>admin</user>
<started>2017-09-08T14:59:49.1317Z</started>
<status>READY</status>
<type>ANALYZE</type>
<priority>MEDIUM</priority>

</JobDocument>

Once the job has finished, the result of the analysis can be found in the bulky metadata of the shape.

A cost estimate can be retrieved, just like for transcodes, using the cost API.

8.6.6 Using Vidinet services from JavaScript

Vidinet services that are not natively supported can be used from JavaScript, for example by creating a custom job
with one or more steps that interact with the Vidinet service using the Vidinet JavaScript functions.

For example:

POST /task-definition/jobtype/MYCOMPANY CUSTOM VIDINET JOB?id=26000

PUT /task-definition/jobtype/MYCOMPANY_ CUSTOM VIDINET_ JOB/step/100
Content-Type: application/xml

<TaskDefinitionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<description>A custom JavaScript step</description>
<script><![CDATA[

var item = ...;

var instruction = "...";

job.vidinetJob ("TEST", instruction, {
item: itemId
});
]]></script>
<step>100</step>
<dependency>
<previous>false</previous>

206 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

<allPrevious>true</allPrevious>
</dependency>
<jobType>MYCOMPANY_CUSTOM_VIDINET_JOB</jobType>
<critical>false</critical>
</TaskDefinitionDocument>

For more information on how to execute jobs for a service in Vidinet, please refer to the Vidinet service documentation.

8.6.7 Transcoding using AWS Elemental MediaConvert

The AWS Elemental MediaConvert integration is currently in developer preview. This means that syntax may change
somewhat for the final implementation.

New in version 4.15.

You can use Elemental MediaConvert to transcode your files using Vidinet. To start with you need to buy the service
in Vidinet and add it to your Vidispine server instance. please refer to the Vidinet service documentation on how to do
that.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>vX-1</id>
<vidinet>
<url>vidinet://el423727-...:...Q42a73b4c-8974-4402-a237-17b80bd11350</url>
<name>My AWS MediaConvert</name>
<endpoint>https://services.vidinet.net</endpoint>
<type>ELEMENTAL_MEDIACONVERT</type>
<state>ONLINE</state>
<scheme>s3</scheme>
</vidinet>
</ResourceDocument>

You then need a new shape-tag with the new mediaconvert element. To install the system default shape-tags that
use Elastic MediaConvert you call:

PUT /APIinit/preset-mediaconvert-templates

Once the vidinet resource is in place and a shape-tag contains the mediaconvert element you can use it as any
other shape-tag for transcoding.

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<description>
BROADCAST, XDCAM, MXF, MPEG2 HD422, WAV, 16x9 DAR, 1920x1080p, 23.98 Hz, 50 Mbps,,
—CBR
</description>
<name>
__mediaconvert_Broadcast_Xdcam Mxf_Mpeg2_Wav_16x9_1920x1080p_24Hz_50Mbps
</name>
<audio/>
<video/>
<mediaconvert>
<outputSetting>
{ "Type": "SYSTEM", "Category": "BROADCAST-XDCAM", ... }
</outputSetting>
</mediaconvert>
</TranscodePresetDocument>

Transcoding using this preset would then cause the transcode to be executed using the Vidinet Elemental MediaConvert
service:

8.6. Vidinet services 207

Vidispine REST APl Documentation, Release 5.x

POST /item/VX-46/transcode?tag=__mediaconvert_Broadcast_Xdcam Mxf Mpeg2_Wav_16x9__
—~1920x1080p_24Hz_50Mbps

The following requirements apply when using MediaConvert:
* The input and output storages needs to be S3 buckets.

¢ The buckets must be accessible to the AWS Elemental MediaConvert service as detailed in the Vidinet service
documentation.

8.6.8 Transcoding using Bitmovin

New in version 5.0.

You can use the Bitmovin service in Vidinet to transcode your files. To start with you need to buy the service in Vidinet
and add it to your Vidispine server instance. Please refer to the Vidinet service documentation on how to do that.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>vx-1</id>
<vidinet>
<url>vidinet://g6d23345-...:...@4b9%16a24-393d-4ff6-85ac-76e3fb082dd9</url>
<name>My Bitmovin transcoder</name>
<endpoint>https://services.vidinet.net</endpoint>
<type>BITMOVIN</type>
<state>ONLINE</state>
<scheme>s3</scheme>
</vidinet>
</ResourceDocument>

Once the vidinet resource is in place you can use any normal shape-tag for transcoding. Please see the Vidinet
service documentation for current restrictions, as they are subject to change with upcoming updates to the Vidinet
system.

The following requirements apply when using Bitmovin:
* The input and output storages needs to be S3 buckets.

¢ The buckets must be accessible to the Bitmovin service as detailed in the Vidinet service documentation.

8.6.9 Analyzing using Vidinet Cognitive Services
New in version 5.0.

You can use Vidinet Cognitive Services to analyze your files and populate them with cognitive metadata. To start you
need to buy a cognitive service in the Vidinet store and add it to your Vidispine server instance. Please refer to the
Vidinet service documentation on how to do that.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>vxX-1</id>
<vidinet>
<url>vidinet://el423727-...:...@42a73b4c-8974-4402-a237-17b80bd11350</url>
<name>My AWS Rekognition service</name>
<endpoint>https://services.vidinet.net</endpoint>
<type>COGNITIVE_SERVICES</type>
<state>ONLINE</state>
<scheme>s3</scheme>
</vidinet>
</ResourceDocument>

208 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

Once the Vidinet resource is in place you can trigger an analysis on an item:

’POST /item/VX-46/analyze?resourceId=VX-1

’<AnalyzeJobDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

Or, on a specific shape:

’POST /item/VX-46/shape/VX-47/analyze?resourceld=Vx-1

’<AnalyzeJobDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

The following requirements apply when using AWS based Cognitive Services:
* The media storage needs to be an S3 bucket.

* The buckets must be accessible to the AWS Cognitive service as detailed in the Vidinet service documentation.

8.6.10 Training custom models using VidiNet Cognitive Services
New in version 21.3.

You can use VidiNet Cognitive Services to train your own models which can be used for detection in an analyze
job. Please refer to the knowledge base (http://www.vidispine.com/partner/knowledge-forum-support) for detailed
instructions on how to get started with custom training.

8.6.11 Creating a highlight reel using Nablet Shrynk
New in version 5.4.

Nablet Shrynk is an Al technology that analyses the content of a video file and assigns an interest factor for each frame
in the video. Once the analysis has been completed a highlight reel can be rendered for any desired output length. In
order to perform the analysis, you need a GPU enabled transcoding service in Vidinet.

Analyze a shape with default parameters:

POST /item/VX-123/shape/VX-456/analyze
Content-Type: application/xml

<AnalyzeJobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<highlighter>
<model>football</model>
</highlighter>
</AnalyzeJobDocument>

When the analysis has finished, start a render job:

POST /item/VX-123/shape/VX-456/highlight-render?tag=__mp4&duration=300

8.6.12 Using Nablet Heightscreen to crop a video into portrait mode
New in version 5.4.

Oftentimes content is filmed in landscape mode, which is not suitable for every device. Nablet Heighscreen uses Al to
determine the areas of highest interest in the video. Once an analysis has been completed for a specific aspect ratio, a
job can be started to render the asset in portrait mode. A GPU enabled transcoder service is needed in order to perform
the analysis.

8.6. Vidinet services 209

http://www.vidispine.com/partner/knowledge-forum-support

Vidispine REST APl Documentation, Release 5.x

POST /item/VX-123/shape/VX-456/analyze
Content-Type: application/xml

<AnalyzeJobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<smartcrop>
<aspect>9:16</aspect>
</smartcrop>
</AnalyzeJobDocument>

When the analysis has finished, start a render job:

POST /item/VX-123/shape/VX-456/smartcrop-render?tag=__mp4&aspect=9_16

8.6.13 Using Interra Baton to perform quality control on your material
New in version 5.6.

Baton QC is an industry standard for performing quality control on media content. It supports the basic checks for
black frames, freezes all the way up to advanced features such as PSE checks. We have built an integration available
in VidiNet, which means you only have to add the service in your VidiNet dashboard. The service is automatically
attached to your VidiCore instance (provided it is running in VidiNet), and we also attach some select Baton test plans
to get you started. Each test plan is added to VidiCore as an analyze preset. The following test plans are provided out
of the box:

* Generic - Has all the basic checks enabled, such as black/freeze frames, blockiness, RGB color gamut and signal
level checks.

* GenericHDR - Same as the Generic plan, but made for HDR content.

* GenericPSE - Same as the Generic plan, but with PSE checks enabled.

* XDCAM_HD_422_MXF_1080i50 - Has specific checks for validating XDCAM HD content.
e AS-11_UK_DPP_HD - Has all the checks for validating AS-11 UK DPP files.

To start a validation, we use a standard ANALYZE job, and provide a Baton test plan as the preset:

POST /item/VX-123/shape/VX-456/analyze?preset=Generic

VidiCore will see that the preset is a Baton test plan and delegate the job to Baton instance running in the cloud. Once
the job has finished, the Baton reports are stored in the bulky metadata of the shape. We can then extract the files by
asking for the bulky metadata as a file. Looking at the resulting bulky metadata, we get the following result:

GET /item/VX-123/shape/VX-456/metadata/bulky

<?xml version="1.0"?>

<URIListDocument>
<uri>baton_error_Generic</uri>
<uri>baton_report_files</uri>
<uri>baton_summary_Generic</uri>

</URIListDocument>

The baton_error_Generic contains a parsed version of the Baton XML report, which can be used to display the errors
in a player for example. The baton_summary_Generic key contains a summary of the number of errors, warnings and
informational messages from the analysis. Finally, the baton_report_files contain the binary data from the PDF and
XML reports. If we look at what this key contains, we can see the following:

210 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

GET /item/VX-123/shape/VX-456/metadata/bulky/baton_report_files

<?xml version="1.0"?2>
<BulkyMetadataDocument id="VX-456">
<field start="-INF" end="+INF" itemTrack="">
<key>baton_report_files</key>

<maps>
<map>
<entry key="filename">baton_VX-123_VX-456_Generic.xml</entry>
<entry key="content">...</entry>
<entry key="type">xml</entry>
<entry key="test-plan">Generic</entry>
<entry key="created">2021-04-09T13:19:48.164%Z</entry>
</map>
<map>
<entry key="filename">baton_VX-123_VX-456_Generic.pdf</entry>
<entry key="content">...</entry>
<entry key="type">pdf</entry>
<entry key="test-plan">Generic</entry>
<entry key="created">2021-04-09T13:19:48.405Z</entry>
</map>
</maps>
</field>

</BulkyMetadataDocumen

The actual file data has been removed from the above snippet to save space. Using the bulky-data-as-file endpoint we
can now get the actual fle content using the following call:

GET /item/VX-123/shape/VX-456/metadata/bulky/baton_report_files/as-file?
—extraMapValues=type=pdf

The extraMapValues is used to filter which <map> to extract the file from. In this case we use the fype entry and
specify that we want the map which has a “type” entry with a value of “pdf”.

8.7 Analyzed Data Unit (ADU)

New in version 5.0.

The analyzed data unit (ADU) is a type of metadata field group containing cognitive analysis metadata, for example
transcript data, celebrity detection, or content moderation. This metadata is gathered from one or more cognitive
service providers and transformed into a standardized format when using the Vidinet Cognitive Services. This stan-
dardized format conforms to the item metadata model.

Every ADU item metadata field group and fields start with the prefix adu_. As this prefix is added by Vidinet
Cognitive Services, it should not be used for other metadata purposes. These structures must not be modified.

8.7. Analyzed Data Unit (ADU) 211

Vidispine REST APl Documentation, Release 5.x

ltem N

adu_{typeOfRecognition} {analyzerld} (vs-rield Group)

FIEIS;UE (ace) Analyzed Value [Field Group Array] . "
Fields inked ompatible
Runld . Value - Linked Data [] . Unified MD
Creation- -\ Ganliknes - Geometry {} nifie

Date « ThumbNail - Additional Payload []

At the top level, the field group is named as adu_<typeOfRecognition>_<analyzerId>. In addition to the
standard metadata fields, it contains metadata fields about the cognitive service provider being used (here referred to
as analyzerId) and what type of cognitive analysis was performed (here referred to as t ypeOfRecognition).

Furthermore, the cognitive analysis metadata itself is stored as field groups inside the top level field group, with the
name of adu_av_analyzedValue. These field groups can contain these fields:

Field Name Value
adu_av_value The metadata that has been identified
adu_av_confidence (Optional) A confidence value between 0 and 1

adu_av_description (Optional) Description of metadata

adu_av_thumbnailUrl

Services

A thumbnail representing the metadata, if available from Vidinet Cognitive

8.7.1 Example ADU

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="184@PAL" end="1397@PAL">

<group>

<name>adu_label_AWSVideoRekognitionAnalyzer</name>
<field>
<name>adu_analyzerId</name>
<value>AWSVideoRekognitionAnalyzer</value>
</field>
<field>
<name>adu_analysisType</name>
<value>label</value>
</field>
<field>
<name>adu_creationDate</name>
<value>2019-07-10T11:08:34</value>
</field>
<field>
<name>adu_analysisMonitorId</name>
<value>9fafb662-7399-4af5-b50e-22530b4e6948</value>
</field>
<field>
<name>adu_value</name>
<value>Apparel, Clothing, Coat, Overcoat, Suit</value>
</field>

212

Chapter 8.

Resources

Vidispine REST API Documentation, Release 5.x

<group>
<name>adu_av_analyzedValue</name>
<field>
<name>adu_av_value</name>
<value>Apparel</value>
</field>
<field>
<name>adu_av_confidence</name>
<value>0.92</value>
</field>
<field>
<name>adu_av_description</name>
</field>
<field>
<name>adu_av_thumbnailUrl</name>
<value>https://via.placeholder.com/160x90. jpg?text=placeholder</value>
</field>
</group>
<group>
<name>adu_av_analyzedValue</name>
<field>
<name>adu_av_value</name>
<value>Clothing</value>
</field>
<field>
<name>adu_av_confidence</name>
<value>0.92</value>
</field>
<field>
<name>adu_av_description</name>
</field>
<field>
<name>adu_av_thumbnailUrl</name>
<value>https://via.placeholder.com/160x90. jpg?text=placeholder</value>
</field>
</group>
<group>
<name>adu_av_analyzedValue</name>
<field>
<name>adu_av_value</name>
<value>Coat</value>
</field>
<field>
<name>adu_av_confidence</name>
<value>0.92</value>
</field>
<field>
<name>adu_av_description</name>
</field>
<field>
<name>adu_av_thumbnailUrl</name>
<value>https://via.placeholder.com/160x90. jpg?text=placeholder</value>
</field>
</group>
<group>
<name>adu_av_analyzedValue</name>
<field>
<name>adu_av_value</name>

8.7. Analyzed Data Unit (ADU) 213

Vidispine REST APl Documentation, Release 5.x

<value>Overcoat</value>
</field>
<field>
<name>adu_av_confidence</name>
<value>0.92</value>
</field>
<field>
<name>adu_av_description</name>
</field>
<field>
<name>adu_av_thumbnailUrl</name>
<value>https://via.placeholder.com/160x90. jpg?text=placeholder</value>
</field>
</group>
<group>
<name>adu_av_analyzedValue</name>
<field>
<name>adu_av_value</name>
<value>Suit</value>
</field>
<field>
<name>adu_av_confidence</name>
<value>0.92</value>
</field>
<field>
<name>adu_av_description</name>
</field>
<field>
<name>adu_av_thumbnailUrl</name>
<value>https://via.placeholder.com/160x90. jpg?text=placeholder</value>
</field>
</group>
</group>
</timespan>
<timespan>...</timespan>
</MetadataDocument>

8.8 Callback location resources

Note: Currently, this feature only works together with ANALYZE jobs

A callback location resource points to a location where VidiCore can expect to find callback documents which contain
scripts that should be executed as part of a job.

Scripts are JavaScripts and are executed by the built in JavaScript engine. See JavaScript.

Currently only S3-buckets are supported as callback locations.

8.8.1 Adding a callback location resource

Add a callback location resource using POST /resource.

POST /resource
Content-Type: application/xml

214 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<callback>
<uri>s3://name:pass@example-bucket/folderl</uri>
</callback>
</ResourceDocument>

8.8.2 Callback Document format

Callback documents should be placed in the location indicated by the callback location resource you wish to use. They
are formatted as such:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<CallbackDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<name>Name of callback script</name>
<description>Description of callback script.</description>
<script>
JavaScript here....
</script>
</CallbackDocument>

Note that they must be saved as .xml-files for the callback executor to recognize them.

8.9 Resource Tags

Resource tags allows you to add key-value metadata to both storage resources and VSAs to group related resources
together. For example we might have storages and VSAs situated in different locations, and we want to tag these
resources to denote which ones are located in one region and which ones are in onther region.

The resource tags are denoted as resourceTag in the resource documents and is a data type that can consist of one to
many K/V-pairs where the key is in the form [A-Za-z] [A-Za-z~-]* [A-Za-z] and value is a comma-separated
list.

For storages there is an inheritence from storage groups to storages, and then from storages to storage methods. So by
adding a storage to a storage group with resource tags the tags are inherited down to both the storage and any storage
method.

A storage can override resourceTag values inherited from storage group(s) by adding matching key directly on storage.
A storage method can override resourceTag values inherited from storage by adding matching key on storage method.

8.9.1 Adding resource tags to VSA

Resource tags for VSAs are configured by adding the resourceTags to the agent.conf for the VSA and a read upon
VSA startup.

Example:

resourceTag.location = Stockholm

This will then be reflected in the VSAs resource document

Example:

<VXAListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<vxa>
<uuid>e5844fdb-9bfb-4£25-a689-72349%9a34507a</uuid>

8.9. Resource Tags 215

Vidispine REST APl Documentation, Release 5.x

<resourceTag>
<key>location</key>
<value>Stockholm</value>
</resourceTag>
</vxa>

</VXAListDocument>

8.9.2 Adding resource tags to storage

Resource tags for storage groups, storages or storage methods are added by providing the resourceTag in either the
storageGroup-, storage- or storageMethodDocument.

Example for a storage:

POST /storage
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<capacity>150000000000</capacity>
<method>
<uri>file:///mnt/ingest/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
</method>
<lowWatermarkPercentage>90</lowWatermarkPercentage>
<highWatermarkPercentage>75</highWatermarkPercentage>
<showImportables>true</showImportables>
<resourceTag>
<key>location</key>
<value>Stockholm</value>
</resourceTag>
</StorageDocument>

Once the storage has been added we can see that both the storage and the storage method have the resourceTag set and
where it has been inherited from.

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VvxX-1</id>
<state>NONE</state>
<priority>MEDIUM</priority>
<type>LOCAL</type>

<method>
<id>Vvx-1</id>
<uri>file:///mnt/ingest/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>

<resourceTag sourceName="VX-1" sourceType="storage">
<key>location</key>
<value>Stockholm</value>
</resourceTag>
</method>

216 Chapter 8. Resources

Vidispine REST API Documentation, Release 5.x

<metadata/>

<showImportables>true</showImportables>
<resourceTag>
<key>location</key>
<value>Stockholm</value>
</resourceTag>
</StorageDocument>

8.9.3 Removing resource tags
Resource tags are removed by posting an empty value together with the resource key which we want to update.

Example:

POST /storage
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<capacity>150000000000</capacity>
<method>
<uri>file:///mnt/ingest/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
</method>
<lowWatermarkPercentage>90</lowWatermarkPercentage>
<highWatermarkPercentage>75</highWatermarkPercentage>
<showImportables>true</showImportables>
<resourceTag>
<key>location</key>
<value></value>
</resourceTag>
</StorageDocument>

8.9. Resource Tags 217

Vidispine REST APl Documentation, Release 5.x

218 Chapter 8. Resources

CHAPTER
NINE

TIMELINES AND SEQUENCES

9.1 Projects and sequences

9.1.1 ltem sequences

An item can hold a number of sequences, and is then called a sequence item. All sequences will be considered
equivalent by Vidispine, that is, that they represent the same logical sequence.

Sequences can also be imported and exported to and from common NLE formats.

The non-timed metadata of a sequence item will contain the following fields:

Field Name Value
__sequence_size | The number of sequences that exist for an item.
__sequence The format of a sequence that exist for an item.

9.1.2 Projects and project versions

A project is a special type of collection that contains a number of project versions. A project version is a collection that
contains the ifems and sequences that together represent a specific version. As both project and project versions are
ordinary collections it means that all existing collection operations can be used, for example editing project metadata.

Projects can also be imported and exported to and from common NLE formats.

Note: Projects and project versions are read-only and cannot be altered by manually adding or removing child items
or collections.

For a project version it is possible to store the original document representing the project, the Final Cut Pro XML
for example, as well as any additional representations, here called Project Version Definitions. Each representation is
stored as binary data, and is identified by a format identifier (e.g. finalcut.)

Any string can be used as the format identifier, except the following which are reserved by Vidispine, but may be used
as long as the content matches.

Identifier Content Description

finalcut application/final-cut-pro Final Cut Pro 7 XML

finalcut-x | application/final-cut-pro-x | Final Cut Pro X XML

aaf application/aaf AAF

fabric application/fabric Fabric CEMS

vidispine application/x-vidispine SequenceType
Example

For a project named “Unnamed project”:

219

Vidispine REST APl Documentation, Release 5.x

<timespan start="-INF" end="+INF">
<field>
<name>__type</name>
<value>project</value>
</field>
<field>
<name>__project_name</name>
<value>Unnamed Projekt</value>
</field>

</timespan>

For a project version with a single Final Cut Pro representation:

<timespan start="-INE" end="+INF">
<field>
<name>__type</name>
<value>projectVersion</value>
</field>
<field>
<name>__project_version</name>
<value>finalcut</value>
</field>

</timespan>

Metadata

Projects and project version collections contains additional (non-timed) metadata that may be useful when searching
for collection.

Field Name Value
_ _type project for project collections.
projectVersion for project version collections.
__project_name The name of the project.
__project_version The format of the definitions that have been stored for a
project version.

9.1.3 Project and sequence import and export

This page describes how to import and export projects and sequences from NLEs such as Final Cut Pro and Avid
Media Composer.

Inspecting a project file

Before a project or sequence can be imported, the project file has to be inspected in order to find out which clips
already exist in Vidispine as items, and which must first be imported.

The input should be an essence mappings document, which is also used for project and sequence import. It is required
so that Vidispine can identify the items and files referenced by the input project file. The document can specify:

* The SHA-1 hash of a file. The response will then contain all items and shapes that reference that specific file.

* The item corresponding to a specific asset. Can be used after a previously unknown asset has been imported and
the correct item is known. If the item has multiple shapes then the shape id must be specified as well.

« If a storage has been locally mounted on the client, then a storage mapping containing the id of the storage and
the local path can be given. This will only be used if the input file references files by path.

220 Chapter 9. Timelines and sequences

Vidispine REST API Documentation, Release 5.x

Example

POST /collection/project/inspect?uri=file:///home/maria/sequence.xml&type=£finalcut
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EssenceMappingDocument xmlns="http://xml.vidispine.com/schema/vidispine">
</EssenceMappingDocument>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<location>file:///home/maria/sequence.xml</location>
<asset>
<id>urn:uuid:8CEDSAFE-1A67-4632-AB57-D5F5B1EOBC49</id>
<name>Sequence l</name>
<type>sequence</type>
<status>unknown</status>
</asset>
<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>
<type>clip</type>
<status>unknown</status>
<file>
<path>file://localhost/Users/maria/Sample%20Clip%20B.mov</path>
</file>
</asset>
<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>
<type>clip</type>
<status>unknown</status>
<file>
<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
</file>
</asset>
</ProjectFileDocument>

With the SHA-1 hash provided for all of the files:

POST /collection/project/inspect?uri=file:///home/maria/sequence.xml&type=£finalcut
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EssenceMappingDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<file path="file://localhost/Users/maria/Movies/Vidispine/VX-1.mov" hash=
—"7b8d6ffelead68800578d6b7d4a09p012c461569" />
<file path="file://localhost/Users/maria/Sample%20Clip%20B.mov" hash=
—"c7cfc97a9c£6634ad94766c0c4b0789cd86bcc33"/>
</EssenceMappingDocument >

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<location>file:///home/maria/sequence.xml</location>
<asset>
<id>urn:uuid:8CEDS8AFE-1A67-4632-AB57-D5F5B1EOBC49</id>
<name>Sequence 1</name>
<type>sequence</type>

9.1. Projects and sequences 221

Vidispine REST APl Documentation, Release 5.x

<status>unknown</status>

</asset>

<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>
<type>clip</type>
<status>unknown</status>
<file>

<path>file://localhost/Users/maria/Sample$20Clip%$20B.mov</path>

</file>

</asset>

<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>

<type>clip</type>
<item id="VX-1" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
<hash>7b8d6ffelead68800578d6b7d4a09b012c461569</hash>
<file>
<id>vxX-1</id>
<path>VX-1.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-1.mov</uri>
<state>CLOSED</state>
<size>30346173</size>
<timestamp>2011-10-13T07:41:48.053+02:00</timestamp>
<refreshFlag>727</refreshFlag>
<storage>VX-1</storage>
<item>
<id>vx-1</id>
<shape>
<id>vx-1</id>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
</ProjectFileDocument>

After the new asset has been imported into Vidispine:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">

222 Chapter 9. Timelines and sequences

Vidispine REST API Documentation, Release 5.x

<location>file:///home/maria/sequence.xml</location>

<asset>
<id>urn:uuid:8CEDSAFE-1A67-4632-AB57-D5F5B1EOBC49</id>
<name>Sequence 1</name>
<type>sequence</type>
<status>unknown</status>

</asset>

<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>

<type>clip</type>
<item id="VX-2" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Sample%20Clip%20B.mov</path>
<hash>c7¢cfc97a9c£6634ad94766c0c4b0789cd86bcc33</hash>
<file>
<id>vx-2</id>
<path>VX-2.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-2.mov</uri>
<state>CLOSED</state>
<size>30346173</size>
<timestamp>2011-10-13T07:42:48.1784+02:00</timestamp>
<refreshFlag>727</refreshFlag>
<storage>VX-1</storage>
<item>
<id>Vx-2</id>
<shape>
<id>VxX-2</id>
<component>
<id>Vvx-2</id>
</component>
<component>
<id>vx-2</id>
</component>
<component>
<id>vx-2</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>

<type>clip</type>
<item id="VX-1" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
<hash>7b8d6ffelead68800578d6b7d4a090012c461569</hash>
<file>
<id>VxX-1</id>
<path>VX-1.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-1.mov</uri>
<state>CLOSED</state>
<size>30346173</size>
<timestamp>2011-10-13T07:41:48.053+02:00</timestamp>
<refreshFlag>727</refreshFlag>

9.1. Projects and sequences 223

Vidispine REST APl Documentation, Release 5.x

<storage>VX-1</storage>
<item>
<id>vx-1</id>
<shape>
<id>vx-1</id>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>Vvx-1</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
</ProjectFileDocument>

9.2 Sequences definitions

9.2.1 SequenceDocument

SequenceDocument (XML complex type SequenceType) is a simple format for describing a sequence, with a model
similar to sequences in the Final Cut Pro XML interchange format.

Structure

A sequence consists of a number of audio and/or video tracks where each track may consist of one of more segments
(to make clips appear edge-to-edge in the generated timeline). Each segment has a position in the timeline (in and
out) and references a specific interval and track of an item (item, sourceTrack (l-based), sourceIn and
sourceOut.)

For video the sourceTrack element specifies the n th video track that should be included. For audio it specifies
a specific channel in an audio track. For example, for media with two audio streams each with two audio channels,
sourceTrack=3 would specific the first channel in the second audio stream.

The elements in / out and sourceIn / sourceOut corresponds to the Final Cut

Pro XML elements in / out and start / end respectively. See Timing Values
(http://developer.apple.com/library/mac/#documentation/AppleApplications/Reference/Final CutPro_XML/Topics/Topics.html#//apple_
CH294-SW12) for more information.

Example

A sequence with a single video track with one second of video from the item with id VX-1.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">

224 Chapter 9. Timelines and sequences

http://developer.apple.com/library/mac/#documentation/AppleApplications/Reference/FinalCutPro_XML/Topics/Topics.html

Vidispine REST API Documentation, Release 5.x

<track>
<audio>false</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>25</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>25</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
</SequenceDocument>

If the item has 10 minutes of video and stereo audio, it could be included in a sequence like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>
<audio>false</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>

9.2. Sequences definitions

225

Vidispine REST APl Documentation, Release 5.x

</timeBase>
</out>
<sourceln>
<samples>(0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
<track>
<audio>true</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceIn>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
<track>
<audio>true</audio>
<segment>
<item>VX-1</item>
<sourceTrack>2</sourceTrack>

226

Chapter 9.

Timelines and sequences

Vidispine REST API Documentation, Release 5.x

<in>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
</SequenceDocument>

A two seconds long video track sequence made from the first second of video from items VX-1 and VX-2 using

multiple segments on one track.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>
<audio>false</audio>
<segment>
<item>VX-1l</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>25</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>

9.2. Sequences definitions

227

Vidispine REST APl Documentation, Release 5.x

<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>25</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
<segment>
<item>VX-2</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>25</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>50</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>25</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
</SequenceDocument>

Effects

The table below describes the effects that can be added to segments in a sequence.

228 Chapter 9.

Timelines and sequences

Vidispine REST API Documentation, Release 5.x

Effect Parameter | Range Description
left 0.0-1.0 Percentage to crop from left side of the picture
right 0.0-1.0 Percentage to crop from right side of the picture
crop
top 0.0-1.0 Percentage to crop from the top
bottom 0.0-1.0 Percentage to crop from the bottom
. vert -1.0-1.0 Vertical offset in output in percentage.
position horiz -1.0-1.0 Horizontal offset in output in percentage.
scale scale 0.0-Inf Horizontal and vertical scale.
rotation | rotation | Inf-Inf Number of degrees to rotate picture, clockwise, around center.
opacity opacity 0.0-100.0 | The opacity, from fully transparent (0.0) to fully opaque (100.0).

Effects are added in the follow way:

<segment>

<effect name="scale">
<parameter name="scale" value="50"/>
</effect>
</segment>

Effects can also be applied at specific key frames.

<segment>

<effect name="scale">
<parameter name="scale">
<point position="0" value="0"/>
<point position="125" value="100"/>
</parameter>
</effect>
</segment>

Rendering two different videos to one view by scaling and positioning them.

<track>
<audio>false</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>250</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>

<effect name="position">

<parameter name="horiz" value="-0.25"/>
<parameter name="vert" value="0.25"/>
</effect>

9.2. Sequences definitions 229

Vidispine REST APl Documentation, Release 5.x

<effect name="scale">
<parameter name="scale" value="50"/>
</effect>
</segment>
</track>
<track>
<audio>false</audio>
<segment>
<item>VX-2</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>250</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>

<effect name="position">
<parameter name="horiz" value="0.25"/>
<parameter name="vert" value="0.25"/>

</effect>

<effect name="scale">
<parameter name="scale" value="50"/>

</effect>

</segment>
</track>

Transitions

The table below describes the transitions that can be added between segments in video tracks in a sequence.
If a transition has a corresponding SMPTE wipe code (http://www.w3.0org/TR/2005/REC-SMIL2-20050107/smil-
transitions.html#TransitionEffects-Appendix) , then either the transition name or wipe code can be used to select

that transition.

230

Chapter 9. Timelines and sequences

http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-transitions.html#TransitionEffects-Appendix

Vidispine REST API Documentation, Release 5.x

Transition | SMPTE Wipe Code

Dissolves

CrossDissolve -

DitherDissolve -

FadeInOutDissolve | -

Wipes

BandWipe -

CentreWipe 21 or22

CheckerWipe -

InsetWipe 3,4,50r6

Iris Wipes

Crosslris 7

DiamondlIris 102

Ovallris 119

Rectanglelris 101

Starlris 128
Example

A sequence with two clips that are transitioned using a star wipe:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>

<audio>false</audio>
<segment>

<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>

Sequences definitions

231

Vidispine REST APl Documentation, Release 5.x

</segment>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceIn>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>30000</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
<transition>
<in>
<samples>14975</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15025</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<transition>StarIris</transition>
</transition>
</track>
</SequenceDocument >

Overriding shape tag transcode preset
New in version 5.6.

The SequenceDocument used for rendering a sequence can also override the output settings of the shape tag specified

232 Chapter 9. Timelines and sequences

Vidispine REST API Documentation, Release 5.x

for the rendition, see the override element in SequenceType in XML Schema for details.

Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<track>
</track>
<override>
<audio>
<mix>
<input
<input
</mix>
<mix>
<input
<input
</mix>
</audio>
</override>

channel="0"
channel="2"
channel="1"
channel="3"

</SequenceDocument>

gain="1.
gain="1.

gain="1.
gain="1.

OH/>
O"/>

O"/>
O"/>

Reference external media on the timeline

New in version 21.3.

The SequenceDocument used for rendering a sequence normally references items that are known to VidiCore, but the
user can also reference external video media by using an URI. See the externalVvideoMedia in SequenceMedi-
aType in XML Schema for details. The externalvideoMedia element has a couple of mandatory elements and

some optional.

Element Explanation
uri URI where VidiCore can access the media.
format File format/extension of the media. For example mov or mxf.
essenceStreamld | Zero based stream/track id of the stream/track to use in the media.
timeBase Time base of the media, used with samples to calculate the media duration.
samples Number of samples, used with timeBase to calculate the media duration.
width Width of the media.
height Height of the media.
pixelAspectRatio | Pixel aspect ratio of the media.

Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<track>

<audio>false</audio>

<segment>

<externalVideoMedia>
<uri>http://www.example.com/my_video</uri>
<format>mov</format>

<essenceStreamId>0</essenceStreamId>

<timeBase>

<numerator>1l</numerator>

<denominator>25</denominator>

9.2. Sequences definitions

233

Vidispine REST APl Documentation, Release 5.x

</timeBase>
<samples>450</samples>
<width>720</width>
<height>576</height>
<pixelAspectRatio>
<horizontal>l</horizontal>
<vertical>l</vertical>
</pixelAspectRatio>
</externalVideoMedia>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>25</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>25</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>

</segment>

</track>
</SequenceDocument>

234

Chapter 9. Timelines and sequences

CHAPTER
TEN

USERS, GROUPS, AND ACCESS CONTROL

The user management system in Vidispine consists of users, groups, and roles.

* Roles are special groups, which cannot be added or deleted via the API.

* Regular groups and users can be added or deleted via the APL

» Users can belong to any number of groups or roles.

* Groups can depend on any number of groups or roles, although cyclic dependencies are not allowed.

* Roles cannot depend on any group or role.

To manage users and groups, see the Users and Groups and roles sections in the API reference.

10.1 Example

The following figure illustrates how users, groups and roles relate.

~

regular_user
Nl"‘-_ .._____q--\--\-
N e /

l‘"__ x_\h '\-..____-*.:

‘k\ “x\

1‘. T

"'\.\

- * / h\'\._\ ’
A
readonly_user ¥ :
“m

235

Vidispine REST APl Documentation, Release 5.x

In the figure above, there are:
e Sixroles: _run_as, _administrator,_search, _import,_metadata_w,and metadata_r.
* Two regular groups: regular_user and readonly_user.

The group readonly_user depends on the roles _search and _metadata_r. The second group,
regular_user depends on the roles _import and _metadata_w, and also the group readonly_user.

In the last relation, readonly_user is called the parent group and regular_user is the child group. A
user which belong to regular_user actually has all four roles.

e Three users: app_user, jdoe, and mrpink.

The user app_user has the role _run_as, jdoe has the roles _administrator, _search, _import,
_metadata_w and _metadata_r and mrpink has the roles _search and _metadata_r.

To visualize the users and groups like above, see User/group visualization.

10.2 Access control for items, libraries, collections

Items, libraries and collections have access control lists that determine what operations a user can perform. The entries
in the list either corresponds to a specific user or to an entire group.

10.2.1 Overview

Vidispine uses the access controls on the item, library or collection to determine if a user has access to perform a
specific operation or not.

All entities will have a OWNER access control that identifies the user that created the entity, and that grants full
access to it. Below is an example access control list document showing the access that has been applied to a specific
collection:

<AccessControlListDocument xmlns:ns0="http://xml.vidispine.com/schema/vidispine">
<access 1id="VX-16610">
<loc>http://vs.example.com:8080/API/collection/VX-16/access/VX-21</loc>
<appliesTo>all</appliesTo>
<permission>OWNER</permission>
<user>admin</user>
</access>
<access 1id="VX-18037">
<loc>http://vs.example.com:8080/API/collection/VX-16/access/VX-21</loc>
<grantor>admin</grantor>
<appliesTo>self</appliesTo>
<appliesTo recursive="true">collection</appliesTo>
<appliesTo recursive="true">item</appliesTo>
<permission>READ</permission>
<user>example-user</user>
</access>
</AccessControlListDocument>

The first access entry is the OWNER access, which shows that the admin user has created the collection, and is thus
the owner with full access.

The second access entry shows that admin has granted READ access to example-user. The appliesTo setting
has been used to determine which entities the access control extends to. In this case, access has been granted to the
collection itself, child collections and items, but not libraries. If the appliesTo element is not set, access is granted
to self and all decedent entities.

New in version 4.17.7.

236 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

All appliesTo settings have a property called recursive which is used to control the depth of the accesses
granted. A recursive setting will dig through the entities entire relationship tree until it finds all entities for which the
setting is applicable. If a setting is not recursive it will only look at the direct children of the entity on which it is set.
If recursive is not explicitly set, the default is that the setting IS recursive. Consider the following example:

¢ Collection A contains Item A and Collection B.
¢ Collection B contains Item B.

<appliesTo recursive="true">item</appliesTo> will affect both Item A and Item B. <appliesTo
recursive="false">item</appliesTo> will only affect Item A.

Setting recursive on self is a no-op. Setting recursive on libraries is also no different from setting recursive to false
since libraries cannot contain further libraries.

Manage access controls using the access control resource on the entity in question. For example, to grant access to
Users, but only allow them access to certain shapes:

POST /collection/VX-16/access
Content-Type: application/xml

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<group>users</group>

</AccessControlDocument>

POST /collection/VX-16/access
Content-Type: application/xml

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>NONE</permission>
<group>users</group>
<operation>
<shape>
<tag>original</tag>
</shape>
</operation>
</AccessControlDocument>

To view the access controls that apply for an item, including any access controls inherited from parent collections or
libraries, see Viewing applied access controls.

10.2.2 Access levels

The higher levels grants the permissions of the lower levels.

NONE Grants no permissions whatsoever.

READ Grants permission to read.

WRITE Grants permission to write.

ALL The highest level that grants permissions to perform operations such as item deletion.

OWNER A specific case of ALL that is given by the system. This level cannot be added or removed.

10.2.3 Priority

The access control lists are sorted in order to determine which entry that applies to a given operation. If there are
multiple matching entries (i.e. match both the item and the operation being performed), following criteria are used to
determine which entry applies, in order of most to least important:

10.2. Access control for items, libraries, collections 237

Vidispine REST APl Documentation, Release 5.x

1. Explicit Priority Controls with a high explicit priority take precedence over controls with lower explicit prior-
ity. An explicit priority can be assigned by setting the priority element in the AccessControlDocument
to the desired level. The default is 0, and entries with a higher number override entries with lower value.
Note that only superusers can create access controls with an explicit priority as users would otherwise be
able to gain access to entities that they shouldn’t have.

2. Inheritance Controls directly on the item take precedence over entries inherited from ancestor collections or
libraries. It is not differentiated where the entry is inherited from, e.g. whether it is through several
‘generations’ of collections, or immediately from a library.

3. User or Group Entries granted directly to users take precedence over entries granted via groups.

4. Operation Type Shape, Metadata, and Uri entries take precedence over Generic entries. For
Metadata, entries with a specific field set takes precedence over general metadata entries.

5. Permission Controls that grant more access take precedence over controls that give less access.

If no matching entry is found access will be denied.

10.2.4 Revoking access

The user that created an access control entry is also tracked. This is the grantor. It is also so that an entry is only valid
if the grantor still has access to the entity. This means that access can be revoked by removing the original entry that
granted access, or by disabling the grantor user without preserving access (see Disable a user).

o

For example, let’s assume that user A is the owner and grants READ access to user B, that in turn grants READ access
to user C, as shown in the figure. Users A, B and C now all have read access. If the access control granting READ
access to user B then the user C will no longer have access.

10.2.5 Operation

There are different types of operations that can be restricted using access control lists. Parameters are optional and
makes the access control entry more specific. If no operation is specified then the entry will be considered generic and
apply to the entire item.

URlIs

Operation /item/ {item-id} /uri
Parameters | type \ The type of the URI to restrict.

Example

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<user>testuser</user>
<operation>
<uri>
<type>lowres</type>
</uri>

238 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

</operation>
</AccessControlDocument>

Shapes

Operation /item/ {item-id} /shape
Parameters | tag \ Restrict access to shapes with this tag.

Example

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>NONE</permission>
<user>testuser</user>
<operation>
<shape>
<tag>lowres</tag>
</shape>
</operation>
</AccessControlDocument>

Metadata

Operation /item/ {item-id} /metadata
Parameters | field \ The name of the field to restrict.

Changed in version 5.0: Comma separated field names are supported in <field>.

Caution: Removal of fields are currently not restricted

Currently fields can be removed without checking the specific access control entry.

Example

<Accesscontroldocument Xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<user>testuser</user>
<operation>
<metadata>
<field>title</field>
</metadata>
</operation>
</AccessControlDocument>

10.3 Access control for metadata fields

Metadata field access control lists can be used to control the usage of metadata fields and metadata field groups at a
global level, i.e. they apply to all items. The default behavior for a field or a group without any access control list is to
grant everyone full permissions.

In case of a conflict, i.e. one or more entries in the access control list for a certain field or group applies to the same
user - the entry granting the highest level of permissions apply.

10.3. Access control for metadata fields 239

Vidispine REST APl Documentation, Release 5.x

Note that metadata field access control lists are applied after any other access control list have been applied. So for
example a metadata field access control list won’t grant a user access to a certain field of an item’s metadata if the user
cannot access the item in the first place.

10.3.1 Permission levels

There are four levels of permission, higher levels of permissions include all other permissions. The semantics of each
permission differs depending on if it is associated with a group or a field.

Per- Field Group

mis-

sion

NONE | Grants no permissions Grants no permissions whatsoever.
whatsoever.

READ | Determines if user can see the Allows for the group to be retrieved and seen when it is listed.
contents of a field. Also allows for the group to be associated with items.

WRITE Allows a user to set the value of a | Allows fields to be added and removed from the group.
field.

DELETEAllows a user to delete a field Allows deletion of the group.
from the metadata of an item.

10.4 User authentication

Authentication of users in Vidispine can be performed in a number of ways depending on the requirements of the
calling application.

1. By passing the user credentials to Vidispine on each request and letting Vidispine authenticate the user based on
the credentials stored in the Vidispine database.

The default HTTP authentication method is HTTP basic authentication. To use a custom HTTP authentication
method, have a look at Apache Shiro Integration.

2. Using Run-As: The application can itself authenticate the user and then connect to Vidispine using a service
account with the Run-As privilege and with the Run-As option enabled, so that the request is then performed as
the already authenticated user.

3. Creating a time-limited token using the API with one of the options above, see Retrieve an authentication token.
This token can then be used in subsequent calls as credential by specifying the HTTP header:

Authorization: token {token}

4. Using long-lived access keys. Access keys are used with HTTP basic authentication, just like with normal
username and password credentials.

10.4.1 Run-As option

The API supports the operation of having the calling application authenticate itself via a single password or a single
certificate credential. The actual end-user can then be specified by the RunAs HTTP header. The calling application
credential must have _administrator or _runas role. The actual end-user roles will be determined by the
RunAs user’s credentials.

A typical Ul application scenario would be:
1. Have the user log in by providing user name and password.
2. Authenticate the user with PUT /user/ (username) /validate.

3. Store the user name with the session.

240 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

4. Use the RunAs header with all communication to the Vidispine API.

10.4.2 Token authentication
The above scenario can also be achieved using short-lived authentication tokens.
1. Have the user log in by providing user name and password.
2. Request an authentication token using GET /tokenor GET /user/ (username) /token.
3. Store the authentication token with the session.
4. Use the token to authenticate all communication to the Vidispine API.

The GET /token endpoint can be used when using access keys to authenticate, in case the username of the user is
unknown.

10.4.3 Use access keys

Access keys can be seen as longed-lived authentication tokens, except that they do not expire. Multiple access keys
can be created for a single user, and can be disabled so that they no longer can be used to successfully authenticate as
that user. Deleting an access key will permanently disable it.

The only time the access key secret will be available is when the access key is first created.

To create an access key:

POST /user/stephen/key/
Accept: application/xml

<AccessKeyDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VSIDEWKIL4R27GPSJ562</id>
<secret>pWUlPFHqyJom2Wg+XaGIUVRQggx5jgnaLIY37/DT</secret>
<status>ACTIVE</status>
<created>2018-06-01T10:36:13.891+02:00</created>
</AccessKeyDocument>

The access key id and secret can the be used to authenticate further requests:

GET /whoami
Authorization: Basic
—VINJREVXSO1MNFIyNOdQUOo1INJI6cFdVbFBGSHE5Sm9tM1dxK1hhRO1VV1JRCcWAd4NWpnbmEMSVk zNy OEVA==

200 OK

stephen

10.4.4 Apache Shiro Integration

As of Vidispine 4.1 requests can be forwarded to Apache Shiro (http://shiro.apache.org/) for authentication, making it
is possible to customize how existing users in Vidispine are authenticated. The Apache Shiro version that is bundled
with Vidispine can be seen in the table below.

Vidispine version | Apache Shiro version
4.12 1.4.0
4.1 1.2.2

10.4. User authentication 241

http://shiro.apache.org/

Vidispine REST APl Documentation, Release 5.x

Custom configuration

On startup Vidispine will try to read a Apache Shiro INI configura-
tion (http://shiro.apache.org/configuration.html#Configuration-INIConfiguration) file from
$instanceRoot/[config/]shiro.ini. The instance root folder typically is
/var/lib/vidispine/server. In case you are starting Vidispine manually via command line shiro.ini
will be loaded from the current directory.

The default configuration file that can be used as a template can be seen below.

Note: The token authentication filter and the Vidispine realm must always be kept so that requests performed inter-
nally by Vidispine will still function.

[main]

vidispineRealm = com.vidispine.security.auth.DefaultVidispineRealm
tokenAuth = com.vidispine.security.auth.TokenAuthenticationFilter
deny = com.vidispine.security.auth.DenyFilter

securityManager.realms = $vidispineRealm
authcBasic.applicationName = vidispineRealm

[urls]
/+*x = noSessionCreation, tokenAuth[permissive], authcBasic

Installing a custom filter or realm

1. Make the JAR file containing your custom filter or realm available on the class-
path. With the vidispine-server package, the JAR file should be copied to
/usr/share/vidispine/server/lib/ext/.

2. Create a shiro.ini file based on the above template and modify it to your needs.

3. Start/Restart the Vidispine service.

Example: Static credentials

This is an example showing how to add a custom realm, in this case a IniRealm
(http://shiro.apache.org/configuration.html#Configuration-%5Cusers%5C) that defines credentials for a static
set of users directly in the configuration file.

[main]
vidispineRealm = com.vidispine.security.auth.DefaultVidispineRealm
tokenAuth = com.vidispine.security.auth.TokenAuthenticationFilter

deny = com.vidispine.security.auth.DenyFilter

securityManager.realms = $iniRealm, S$vidispineRealm
authcBasic.applicationName = "vidispineRealm"

[urls]
/** = noSessionCreation, tokenAuth[permissive], authcBasic

[users]
admin=password

Testing the configuration:

242 Chapter 10. Users, Groups, and Access control

http://shiro.apache.org/configuration.html#Configuration-INIConfiguration
http://shiro.apache.org/configuration.html#Configuration-INIConfiguration
http://shiro.apache.org/configuration.html#Configuration-%5Cusers%5C

Vidispine REST API Documentation, Release 5.x

GET /API/version HTTP/1.1

Authorization: Basic YWRtaW46cGFzc3dvcmQ=
User—Agent: curl/7.32.0

Host: localhost:8080

Accept: */*

HTTP/1.1 200 OK

GET /API/version HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
User—Agent: curl/7.32.0

Host: localhost:8080

Accept: */x

HTTP/1.1 200 OK

GET /API/version HTTP/1.1

Authorization: Basic YWRtaW46aW52YWxpZA==
User—-Agent: curl/7.32.0

Host: localhost:8080

Accept: /%

HTTP/1.1 401 Unauthorized

Note: By default Apache Shiro will accept a request if at least one realm accepts the provided credentials, which
is why the passwords password (accepted by iniRealm and admin (accepted by vidispineRealm) are both
accepted.

Automatic creation of users

When wusing a custom Shiro realm to authenticate users, it may be the case that the
user exists in the custom realm, but not in Vidispine. The Shiro authentication listener
com.vidispine.security.auth.UserCreationListener, can be used to have users automati-
cally created/updated after a successful authentication attempt, to match the user information provided by that
realm.

In the shiro.ini, add the user creation listener:

[main]

userInfoProvider = com.example.CustomRealmUserInfoProvider

userCreationlListener = com.vidispine.security.auth.UserCreationlListener
userCreationListener.infoProvider = SuserInfoProvider
userCreationListener.enableUserOnLogin = true
securityManager.authenticator.authenticationListeners = SuserCreationListener

The com.vidispine.security.auth.UserCreationListener requires a

com.vidispine.security.auth.spi.VidispineUserInfoProvider that can return the Vidispine
user information from the user account information from Shiro/the custom realm.

The implementation of the VidispineUserInfoProvider, com.example.CustomRealmUserInfoProvider
in the example above, should be placed in a JAR file available on the classpath, typically in the

10.4. User authentication 243

Vidispine REST APl Documentation, Release 5.x

/usr/share/vidispine/server/lib/ext/ directory.

Changed in version 4.17.4: The enableUserOnLogin field was added.

Note: OAuth2 and automatic user creation doesn’t work together at the moment.

OAuth 2.0

Version 4.4 contains a Shiro filter that can be used to authenticate Bearer tokens. To use, add the following to
shiro.ini:

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter

[urls]

/+x = noSessionCreation, tokenAuth[permissive], ocauth2Auth|[permissive], authcBasic

The validation of tokens can be done in three ways:
1. By checking the token against a plain public key or a public key in an X.509 certificate.
2. By checking the token against public keys given by federation metadata.

3. By checking the token against a validation provider.

Example: static public key(s)

To set the static public key(s), add the following to shiro.ini:

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth.x509Certificate = {x509-certificateA}, {x509-certificateB}
oauth2Auth.publicKey = {publicKeyA}, {publicKeyB}

oauth2Auth.expectedAudience = {expected-audience}

oauth2Auth.tokenUser = email # example

[urls]

/+x = noSessionCreation, tokenAuth[permissive], oauth2Auth|[permissive], authcBasic
Where {x509-certificate} is a X.509 certificate encoded with Base64, e.g. MII...== and, similarly, the

{publicKey} is a Base64 encoded public key, e.g MII. . . AB. Token validation includes these steps:

e Vidispine cycles through the certificates and public keys provided, e.g {x509-certificateA},
{x509-certificateB}, {publicKeyA}, {publicKeyB} and tries to verify the token’s signature.

¢ The JWT claim sub must be present in the token (it’s value isn’t used).
e The JWT claim aud must contain an entry matching the {expected-audience} value.

After successful token validation Vidispine reads the JWT claim defined by the tokenUser property and uses it as
Vidispine user name.

244 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

Example: federation metadata

Federation metadata is similar to a static certificate, but multiple certificates can be used, and they are automatically
downloaded regularly.

[main]
oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth.federationMetadataURI = https://login.microsoftonline.com/common/

—FederationMetadata/2007-06/FederationMetadata.xml
oauth2Auth.federationMetadatalnterval = 86400
oauth2Auth.expectedAudience = https://graph.windows.net

oauth2Auth.tokenUser = unique_name
[urls]
/*% = noSessionCreation, tokenAuth[permissive], ocauth2Auth[permissive], authcBasic

Example: validation service

Here, The token is validated against validation server. The result is stored in cache for 10 minutes.

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth.validationEndpoint = https://www.googleapis.com/userinfo/v2/me
oauth2Auth.tokenUser = email

[urls]
/+* = noSessionCreation, tokenAuth[permissive], oauth2Auth[permissive], authcBasic

In an OpenID Connect (OIDC) context token validation usually will take place against the OIDC userinfo endpoint.
Depending on your OIDC server this may require tokens with the oidc scope that are available in the OIDC hybrid
flow.

In the example above with Google, the https://www.googleapis.com/auth/userinfo.email scope is used.

Configure OAuth2 using the API
New in version 4.17.

You can update the OAuth2 configuration via the API. To enable/disable the API access, from the shiro.ini file,
use the setting: allowConfigUpdate true/false. If there is no shiro.ini file present, the API access is enabled
by default. Only users with the _administrator role can access the configuration from the API.

Example

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth.x509Certificate = {x509-certificate}
oauth2Auth.expectedAudience = {expected-audience}

oauth2Auth.tokenUser = sub
oauth2Auth.allowConfigUpdate = false

10.4. User authentication 245

https://www.googleapis.com/auth/userinfo.email

Vidispine REST APl Documentation, Release 5.x

[urls]
/+* = noSessionCreation, tokenAuth[permissive], ocauth2Auth[permissive], authcBasic

Example

Get the current configuration.

GET /configuration/auth
Content-Type: application/xml

<OAuth2ConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<federationMetadataInterval>86400</federationMetadataInterval>
<tokenUser>unique_name</tokenUser>

</OAuth2ConfigurationDocument>

Example

Updating the configuration for a X.509 certificate.

PUT /configuration/auth
Content-Type: application/xml

<OAuth2ConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<x509Certificate>{x509certificate}</x509Certificate>
<expectedAudience>{expected-audience}</expectedAudience>
<tokenUser>email</tokenUser>

</OAuth2ConfigurationDocument>

Example

Changed in version 5.6.

Updating the configuration for multiple X.509 certificates and public keys.

PUT /configuration/auth
Content-Type: application/xml

<OAuth2ConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<x509Certificate>{x509certificateA}</x509Certificate>
<x509Certificate>{x509certificateB}</x509Certificate>
<publicKey>{public-keyA}</publicKey>
<publicKey>{public-keyB}</publicKey>
<expectedAudience>{expected-audience}</expectedAudience>
<tokenUser>sub</tokenUser>

</OAuth2ConfigurationDocument>

Example

Updating the configuration for federation metadata.

PUT /configuration/auth
Content-Type: application/xml

<OAuth2ConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<federationMetadataURI>https://login.microsoftonline.com/common/
—FederationMetadata/2007-06/FederationMetadata.xml</federationMetadataURI>

246 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

<federationMetadataInterval>86400</federationMetadatalnterval>

<expectedAudience>https://graph.windows.net</expectedAudience>

<tokenUser>unique_name</tokenUser>
</OAuth2ConfigurationDocument>

Example

Updating the configuration for validation service.

PUT /configuration/auth
Content-Type: application/xml

<OAuth2ConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<validationEndpoint>https://www.googleapis.com/userinfo/v2/me</validationEndpoint>
<tokenUser>email</tokenUser>

</OAuth2ConfigurationDocument>

Example

Delete the current configuration.

DELETE /configuration/auth
Content-Type: application/xml

10.5 LDAP

Vidispine can authenticate users against an LDAP server and automatically synchronize users and groups from a
directory at regular intervals if required.

10.5.1 User authentication
For users to be authenticated by an LDAP server, the server must first be configured in Vidispine.

1. An LDAP resource must be created, containing the connection details. There can currently only be one config-
ured LDAP resource.

2. LDAP authentication must be enabled using the 1 dapAuthent icat ion configuration property.

Users that are successfully authenticated will be added to Vidispine and will have the _user role by default.

Example: Enabling LDAP authentication

First, create the LDAP resource:

POST /resource
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>

<url>ldap://someserver:389</url>
<useStartTLS>false</useStartTLS>
<userDN>cn=Users, dc=example, dc=com</userDN>
<usernameAttribute>sAMAccountName</usernameAttribute>
<userSearchFilter> (objectClass=user) </userSearchFilter>
<bindDN>cn=Administrator, cn=Users, dc=example, dc=com</bindDN>
<bindPassword>password</bindPassword>

10.5. LDAP 247

Vidispine REST APl Documentation, Release 5.x

</1ldap>
</ResourceDocument>

Then enable LDAP authentication:

PUT /configuration/properties
Content-Type: application/xml

<ConfigurationPropertyDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<key>ldapAuthentication</key>
<value>true</value>

</ConfigurationPropertyDocument>

Configuration
The elements in the LDAP resource are:

url The LDAP server(s) to connect to. Specify multiple servers to enable failover. Can be either 1dap:// or
ldaps:// (for SSL).

New in version 5.1.

To utilize the VSA port forwarding service feature for LDAP servers; the URL needs to be added as such:
vxa://<vxaUUID>:<id>

Note: The scheme for the URL must be vxa and the port should refer to the ID of the port forwaring service. For
example:

<url>vxa://e5817fdb-9deb-4£25-a689-72349a78407a:1</url>

useStartTLS Enables/disables StartTLS. Will be ignored when connecting using SSL.
userDN The user search base.

userSearchFilter The user search filter. The defaultis (objectClass=x«). The search filter and username
attribute together define the filter that is used in the user query:

(@ ("userSearchFilter’) (TusernameAttribute’ =username))

If a single entry is found then a second bind is made to authenticate the user.

usernameAttribute The attribute that contains a users username/login name. Must uniquely identify a user. The
default is sAMAccountName.

realNameAttribute The attribute that contains a users real name. The default is cn.

cacheLifetime Passwords are cached to reduce the number of requests made to the server. This element specifies
how long password should be cached (in milliseconds). The defaultis 1800000 (30 minutes).

usernameFormat Can be setto lower to force Vidispine to lower case all usernames read from the LDAP server.
The bind properties can be set so that Vidispine authenticates using a bind request before searching for users or groups:
bindDN The DN of the entry to bind to before searching for a user.

bindPassword The password to provide in the bind request.

248 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

10.5.2 User and group synchronization

Vidispine can automatically synchronize users and groups, as well as user and group dependencies. Synchronization
will be enabled if the sync element has been set.

Users from the directory that do not exist in Vidispine can be automatically created. If this should be enabled or not is
typically a matter of:

 Licensing. If you are restricted to a certain number of users, then you may not want to create them in Vidispine
if they are not using the system.

* Application needs. Access to an item can only be granted to a user that exists in Vidispine for example.

Caution: Password validation using PUT /user/ (username) /validate will not work for imported users
unless t ype=raw. This because a users password won’t be available until the user has authenticated successfully
at least once before. Validation should instead be performed using normal HTTP authentication.

Configuration
The sync element in the LDAP resource controls the synchronization:
sync If set then users and groups will periodically be updated from the LDAP server.

sync/interval The interval in milliseconds between synchronization attempts. The default is 1800000 (30
minutes).

sync/importOrganizationalUnits Indicates whether or not organizational units should be created as
groups in Vidispine. Only units having users or groups will be added (as well as the parent units to these.)

sync/createUsers If new users should automatically be created. If false, then existing users will be updated
by new/unknown users will be ignored.

sync/createGroups If new groups should automatically be created. If false, then existing groups will be
updated by new/unknown groups will be ignored.

Old installations may still use the import element.

import Deprecated since version 4.0: The import element was previously used to enable synchronization. Use
sync with createUsers=true and createGroups=true instead.

How groups are synchronized can be configured using the elements below.

groupDN The group search base. The default is the same as userDN.
groupSearchFilter The group search filter. The defaultis (objectClass=group).
groupnameAttribute The attribute that contains a groups name. The default is name.

Subgroups are supported, that is, if the LDAP group query returns two groups, A and B, and B is listed as a member
of A, then B will be added as a subgroup of A in Vidispine.

TLS configuration

New in version 5.3.2.
Two new optional elements have been added to control TLS (SSL) connection to control 1daps connection.

secureProtocol Controls which protocol to use. By default the standard Java setting is used (normally TLSv1.0).
Recommended value is TLSv1. 2.

serverCertificate Used to validate the server. Should be in PEM format, lines delimited by new-line character.
Multiple certificates can be added.

10.5. LDAP 249

Vidispine REST APl Documentation, Release 5.x

Example:

Note: If no certificates are given, all certificates are trusted.

Examples

Importing all users from the Users organizational unit from an Active Directory server:

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>
<url>ldap://example.com:389</url>
<userDN>cn=Users, dc=example, dc=com</userDN>
<usernameAttribute>sAMAccountName</usernameAttribute>
<userSearchFilter> (objectClass=user)</userSearchFilter>
<bindDN>cn=Administrator, cn=Users, dc=example, dc=com</bindDN>
<bindPassword>{password}</bindPassword>
</ldap>
</ResourceDocument>

Importing only members of a certain group:

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>

<userSearchFilter> (& (objectClass=user) (memberOf=cn=mam, cn=Groups, dc=example,
—~dc=com)) </userSearchFilter>
<groupSearchFilter> (& (objectClass=group) (memberOf=cn=mam, cn=Groups, dc=example,
—dc=com)) </groupSearchFilter>
</ldap>
</ResourceDocument>

Importing no groups, but creating groups to mirror the organizational unit tree structure.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>

<groupSearchFilter> (& (objectClass=group) (|))</groupSearchFilter>
<import>
<importOrganizationalUnits>true</true>
</import>
</ldap>

</ResourceDocument >

The user Joe (cn=Joe, ou=Users, dn=example, dc=com) would then be added to the Users group.

Trigger LDAP synchronization

This resource can be used to force a synchronization of users and groups, for example to verify that it is working
properly.

250 Chapter 10. Users, Groups, and Access control

Vidispine REST API Documentation, Release 5.x

POST /resource/ (type)/
resource-id / sync Triggers a synchronization of users and groups.

If users and groups are already synchronizing, than this will have no effect.
Parameters
* type — Must be ldap.

For example:

H EEIPOST /resource/ldap/VX-1/sync

2[oJo] ox

10.5.3 Troubleshooting

If you are having problems with the LDAP integration then the best place to start is to check the LDAP self test. The
test will connect to the LDAP server and list the users and groups that are found using the current configuration.

GET /selftest/ldap
Content-Type: application/xml

<SelfTestDocument xmlns="http://xml.vidispine.com/schema/vidispine” name="ldap"
—status="ok" took="Ims">

<message>No LDAP resource has been defined</message>
</SelfTestDocument>

You can also use tools such as Idapsearch (http://www.openldap.org/software/man.cgi?query=ldapsearch) or
1dp.exe to verify the configuration:

$ ldapsearch -h ad.example.com -D "CN=VS,OU=Users,DC=example,DC=com" -W -b "OU=Users,
—DC=example, DC=com"

If the configuration is correct, but users are still not being authenticated properly, then set the following log levels, try
to authenticate once more and then check the application server log file to see what is going on.

com.vidispine.security=FINEST
com.vidispine.authentication=FINEST

For example, this error would indicate that the userDN element is missing:

Caused by: com.sun.enterprise.security.auth.realm.BadRealmException: A search base DN_,
—must be provided.

at com.vidispine.security.auth.realm.MultiRealm.init (MultiRealm. java:89)

at com.sun.enterprise.security.auth.realm.Realm.doInstantiate (Realm. java:233)

Users are not assigned to the correct groups

Users will only be added to LDAP groups that have a corresponding group in Vidispine. If LDAP import is enabled
then groups will also be created. Verify that the name attribute of the group corresponds to the name of the group in
Vidispine.

Note that if a group is removed from the directory then the users will still be a part of the group. This is because we
currently do not track which groups are to be synchronized with the groups from the directory, except by name.

10.5. LDAP 251

http://www.openldap.org/software/man.cgi?query=ldapsearch

Vidispine REST APl Documentation, Release 5.x

Users can only log in by entering their upper case username

What you can do is set usernameFormat to lower in the LDAP resource. Vidispine will then lower case all
usernames read from the LDAP directory. Your users can then login by entering their username in lower case, or in
any letter case if your application is lower casing usernames.

Disabled the user can still login
A user will be marked as disabled if:
* The user has been removed from the directory.
« If the user has been disabled (Active Directory only.)

If users should be disabled based on some other criteria then update the user search filter so that it excludes users
accordingly. For example:

(& (objectClass=user) (! (userAccountControl:1.2.840.113556.1.4.803:=2)))

It’s still not working

Contact us directly and we will try to figure out what’s going on.

252 Chapter 10. Users, Groups, and Access control

CHAPTER
ELEVEN

MULTI-SITE

11.1 Multi-site

Vidispine supports syncing between remote sites, this is handled via site rules. In order to start using the multi-site
capabilities, the sites must first be set up so they know about each other.

11.1.1 Site names

Every site must have a name. Out of the box, a Vidispine instance will have the site name VX. The site name determines
what prefix the ID:s in the system will get (e.g. VX-1234) The site name can be changed by setting the Java system
property com.vidispine.site. Itis important that every site in a multi site setup have different names.

11.1.2 Multi site setup

Before anything can be synced between sites, Vidispine must be told how to connect to the remote sites. This is done
by adding a site definition for each remote site. How this is done in practice is described in the reference section.

It is important to note that all sites must know about all other sites in order for the syncing to work properly! It is also
important that the clocks on the different servers are set correctly, since for some operations the timestamps of changes
are important.

11.1.3 Site rules

To determine which entities to sync to remote sites, Vidispine uses site rules. Site rules can be defined for a number of
different entity types, and the rules can also define what parts of the item should be synced.

Site rules can be set for individual entities or collectively for all entities of a specific type (e.g. you could set a site rule
applying only to item VX-100, or a rule that applies to all items in the system).

Site rules can be added for the following entity types:
* Items
* Collections All child entities will also be synced.
¢ Libraries All child items will be synced.
 Users Will also sync any parent groups.
» User groups Any child groups and users will be synced with the group.

Depending on what entity type the rule is posted to, a number of different settings are available. For item, collection
and library rules, the following settings are available:

* metadata Whether or not to sync metadata

 access Whether or not to sync ACLs for the entities. This also requires that the affected users and groups have
been synced, otherwise this setting will have no effect.

253

Vidispine REST APl Documentation, Release 5.x

 shape Determines whether or not to sync a shape containing this tag.
* files Whether or not to also sync files or just shape information.
User and group rules have no special settings.

Setting a site rule on an entity will cause it to be synced to the remote site specified in the rule, and any future changes
will also be synced. A synced item will be synced both ways. So any changes made on the remote site will be synced
back to the original site as well.

Example

The following XML would describe a site rule for an item to the site NY. Metadata is synced, ACLs are not synced,
and any web and editing shapes will be synced along with the files:

<SiteRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<site>NY</site>
<metadata>true</metadata>
<access>false</access>
<shape>web</shape>
<shape>editing</editing>
<files>true</files>
</SiteRuleDocument>

11.1.4 Conflicts

When having a synced item on several sites, there is always the possibility of metadata conflicts occurring. In the
Vidispine multi-site setup, it is handled as “last edit wins”. Meaning that the edit with the latest timestamp will win.
This does not mean that the older change is lost however. A full history of all edits will still be available on all sites,
and the old value can be manually brought back with a later edit.

254 Chapter 11. Multi-site

CHAPTER
TWELVE

MISCELLANEOUS TOPICS

12.1 Deletion lock

New in version 4.15.

Deletion lock is a mechanism to prevent entities from been moved or deleted. Entities that support deletion lock are
collections, items and files.

Note: New in version 4.17.2.

Locked files can be moved by running an explicit move job. Thus, overriding the lock for that file.

12.1.1 Adding locks

Deletion locks can be added to collections, items and files. All locks must have an expiration time, and can have user
defined key-value metadata that can be used to filter locks and to for example explain why a lock exists.

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
<metadata>
<field>
<key>reason</key>
<value>Locked for playout</value>
</field>
</metadata>
</DeletionLockDocument>

Deletion locks can also be used in searches, and support notifications so that you can easily take action once a lock
has expired.

12.1.2 Lock expiration
All deletion locks must have an expiration time.
» Expired locks are treated as if they weren’t present at all.

e Expired deletion locks on collections and items can be automatically removed if
autoRemoveExpiredDeletionLocks is setto true.

 Expired file deletion locks need to be removed manually.

The i sExpired attribute highlights locks that have expired:

255

Vidispine REST APl Documentation, Release 5.x

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine" isExpired=
—"true">
<id>Vx-1574</id>
<user>admin</user>
<expiryTime>2018-09-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-12T14:27:03.175+02:00</modified>
<entityType>Item</entityType>
<entityId>VX-32140</entityId>>
</DeletionLockDocument>

12.1.3 Working with multiple locks
An entity can have multiple deletion locks, but only zero or one effective deletion lock.

* An effective lock is a lock that hasn’t expired, and has the maximum expiration time among all the explicit locks
and inherited locks.

¢ An entity with an effective deletion lock can be copied, but not moved or deleted; either by any explicit API
request, or Vidispine internally (storage-rule for example).

In the examples below, you will see that effective locks are shown as isEffective="true.

12.1.4 Lock inheritance

Deletion locks will be automatically inherited from parent to child entities, i.e., from collection to sub-collections to
items and then to files, with one exception:

« If there is any explicit lock set on a file, the file will not inherit any parent locks.

One use case of this behavior is that if the original asset needs to be kept for a longer period of time, but its copy can
be removed earlier.

12.1.5 Transient metadata

An entity’s effective lock id and expiration time are added to the entity’s metadata as transient fields:
e __deletion_lock_id - The id of the effective lock on the entity (st ring—exact).
e __deletion_lock_expiry - The expiration time of the effective lock (date).

For example, an item with a deletion lock will have metadata:

GET /item/VX-132340/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-132340">
<metadata>
<revision>VX-706676,VX-706677,VX-706678,VX-706671,VX-706672</revision>
<timespan start="-INF" end="+INEF">

<field>
<name>__deletion_lock_id</name>
<value>Vx-1559</value>

</field>

<field>
<name>__deletion_lock_expiry</name>
<value>2018-10-13T07:49:46.6372</value>

</field>

</timespan>

256 Chapter 12. Miscellaneous Topics

Vidispine REST API Documentation, Release 5.x

</metadata>
</item>
</MetadatalistDocument>

The same applies for files:

GET /storage/file/VX-10725401/metadata

<SimpleMetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<key>__deletion_lock_expiry</key>
<value>2019-10-09T16:49:41.652</value>
</field>
<field>
<key>__deletion_lock_id</key>
<value>VX-1561</value>
</field>
</SimpleMetadataDocument>

12.1.6 Examples
Collection lock inheritance
Assuming one collection and one item:

* The item belongs to the collection.

* The collection has an explicit lock set.

POST /collection/VX-9129/deletion-lock

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
</DeletionLockDocument>

Both the collection and the item will get the deletion lock.

GET /collection/VX-9129/deletion-lock

<DeletionLockListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<lock isEffective="true">
<id>Vx-1410</id>
<user>admin</user>
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:04:24.125+02:00</modified>
<entityType>Collection</entityType>
<entityId>VX-9129</entityId>
<metadata/>
</lock>

</DeletionLockListDocument>

GET /item/VX-132271/deletion-lock

<DeletionLockListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<lock isEffective="true" isInherited="true">
<id>Vx-1410</id>

12.1. Deletion lock 257

Vidispine REST APl Documentation, Release 5.x

<user>admin</user>
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:04:24.125+02:00</modified>
<entityType>Collection</entityType>
<entityId>VX-9129</entityId>
<metadata/>
</lock>

</DeletionLockListDocument>

Effective locks
Assuming one collection and one item:

» Each of them have one explicit lock set.

POST /collection/VX-9129/deletion-lock

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
</DeletionLockDocument>

POST /item/VX-132271/deletion-lock

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2019-09-09T18:49:41.650+02:00</expiryTime>
</DeletionLockDocument>

The item will inherit the lock from the collection. The effective lock of the item is the inherited one, since it has longer
expiration time.

GET /item/VX-132271/deletion-lock

<DeletionLockListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<lock>
<id>VxX-1411</id>
<user>admin</user>
<expiryTime>2019-09-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:16:42.802+02:00</modified>
<entityType>Item</entityType>
<entityId>VX-132271</entityId>
<metadata/>
</lock>

<lock isEffective="true" isInherited="true">
<id>VxX-1410</id>
<user>admin</user>
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:04:24.125+02:00</modified>
<entityType>Collection</entityType>
<entityId>VX-9129</entityId>
<metadata/>

</lock>

</DeletionLockListDocument>

Explicit file locks

Assuming one item with one file in it:

258 Chapter 12. Miscellaneous Topics

Vidispine REST API Documentation, Release 5.x

* Both the item and the file have explicit locks set.

POST /item/VX-132164/deletion-lock

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2019-10-09T18:49:41.650+02:00</expiryTime>
</DeletionLockDocument>

POST /£file/VX-10725401/deletion-lock

<DeletionLockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<expiryTime>2017-09-09T18:49:41.650+02:00</expiryTime>
</DeletionLockDocument>

The file will not inherit any lock from the item, since it has an explicit lock. In this case, the file lock has expired, so
the file can be removed.

GET /item/VX-132164/deletion-lock

<DeletionLockListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<lock isEffective="true">
<id>vx-1412</id>
<user>admin</user>
<expiryTime>2019-09-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:39:30.402+02:00</modified>
<entityType>Item</entityType>
<entityId>VX-132164</entityId>
<metadata/>
</lock>
</DeletionLockListDocument>

GET /storage/file/VX-10725401/deletion-lock

<DeletionLockListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<lock isExpired="true">
<id>Vvx-1413</id>
<user>admin</user>
<expiryTime>2017-09-09T18:49:41.650+02:00</expiryTime>
<modified>2018-10-11T15:40:30.483+02:00</modified>
<entityType>File</entityType>
<entityId>VX-10725401</entityId>
<metadata/>
</lock>
</DeletionLockListDocument>

Search using deletion locks

The deletion lock transient metadata fields can be used in collection, item and file searches. For example, to find items
that will expire in the coming week:

PUT /search

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine" version="1">
<field>
<name>__deletion_lock_expiry</name>

12.1. Deletion lock 259

Vidispine REST APl Documentation, Release 5.x

<range>
<value>NOW</value>
<value>NOW+7DAYS</value>
</range>
</field>
</ItemSearchDocument>

260 Chapter 12. Miscellaneous Topics

CHAPTER
THIRTEEN

MONITORING

To get better insight into the operations of jobs and services you ca