Vidispine REST APl Documentation
Release 4.2.2

Vidispine AB

March 24, 2016






CONTENTS

Introduction and data model 3
[.1  Entitiesin Vidispine . . . . . . . . . . . . e e e e e e 3
1.2 RESTul APT . . . . . e e e e e e e 6
1.3 Commonelementsinthe API . . . . . . . . . . . . ... . . e 7
1.4 Time representation . . . . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e 9
1.5 Constants . . . . o v v v e e e e e e e e e e e e e e e e e e e e e e 12
Items and Metadata 13
2.1 TIMPOIES .« . v o o e e e e e e e e e e e e e e e e e e 13
2.2 BXPOITS .« v v v o e e e e e e e e e e e e e e e e e e e e e e e e 15
2.3 Ttemmetadata . . . . .. L e e e e e e e e e e e e e 17
2.4 Searching foritems (and collections) . . . . . . . . . . . .o e e 31
2.5 Metadata projections . . . . . . .. i e e e e e e e e e e e e e e e e e e e e e e e 49
2.6 Metadata migrations . . . . . . . ... L. e e e e e e e e e e e e e e e 55
2.7 Subtitles . ..o e e e e e e e e e e e e 57
2.8 Examples . . . ... e e e e e e e e e e e e 61
Collections and Libraries 77
3.1 CollectionS . . . . v o i e e e e e e e e e e e e e e 77
3.2 LAbraries . . . .. . e e e e e e e e e e e e e 80
Shapes, Components and Transcoding 85
4.1 Ttemshapes . . . . . o v o e e e e e e e e e e e e 85
4.2 Shape tags and Presets . . . . . . o v v it e e e e e e e e e e e e e e e e e e e e e e 89
43 COmMMON PIESELS . & v v v v v e v v e e e e e e e e e e e e e e e e e e e e e e e 98
Storages and Files 109
5.1 Storages ... oL e e e e e e e e e e e e 109
5.2 Automatic IMPOTL. . . . v v v v it e e e e e e e e e e e e e e e e e e e e e e e e e 117
53 Storage rules . . ... L. e e e e 120
54 Filenames . . . . . . . .. e e e e e e e e e e e e e e e e 122
5.5 URI’s, URL’s, and Special Characters . . . . . . . . . . o v v i ittt i e e e e e 124
Jobs and Task Definitions 127
6.1  JObS . . e e e e e e 127
6.2 JavaScripttasks . . . . .. e e e e e e e 130
6.3  Task groups . . . . . .. e e e e e 133
Notifications 137
Tl RESOUICES .« v v v v o v o e e e e e e e e e e e e e e e e e e e e e e e e e e 137
T2 ACHONS . . . o o e e e e e e e e e e e e 137




7 T o ) ¢
74 Jobfiltering . . . . . . . e e e e e e e e e e
7.5 Flters . . . . o o e e

Resources

8.1  Transcoders . . . . . . . . . e e e e e e e e e e e e e e e e
8.2  Transcoder diSCOVEIY . . . . . . . . . o i i e e e e e e e e e
8.3 External transcoders . . . . . . . . .. e e e e e e e e e
8.4 Thumbnail resources . . . . . . . . . . . i e e e e e e e e e e
8.5 Vidispine Server Agent . . . . . . . oLl e e e e e e e e e e e

Timelines and sequences
9.1 Projects and SEQUENCES . . . . . . . v v it e e e e e e e e e e e e e
9.2 Sequences definitionS . . . . . . . L . L e e e e e e e e e e e e e e

10 Users, Groups, and Access control

10.1 Example . . . . . oo e e e
10.2 Access control for items, libraries, collections . . . . . . . . . . . . ... e e
10.3  Access control for metadata fields . . . . . . .. .. ... ... ..
10.4 User authentication . . . . . . . . . . . v i v i i e e e e e e e e e e e e e e e e e
10.5 LDAP . . . o e e

11 Multi-site

11,1 Multi-site . . . . . . o e e e e e e e e e e e e e

12 Monitoring

12.1 StatsD . . . e e e e e e e
122 IMX e e

13 Configuration and Integration

13.1 System configuration . . . . . . . . . ... e e e e e e e e e e e e
13.2 Externalidentifiers . . . . . . . . . . . e e
13.3 License handling . . . . . . . . . . . e
13.4 Using JavaScript to extend Operations . . . . . . . . . . it i e e e e e e e e e e
13.5 Archive Integration . . . . . . . . . . . L e e e e e e e e e e
13.6 S3 Event Notifications . . . . . . . . . . . . . . e
13.7 Signiant Integration . . . . . . . . . oL e e e e e e e e e e e
13.8 Asperalntegration . . . . . . . . . . .o e e e e e e
13.9 FileCatalyst Integration . . . . . . . . . v v i i e e e e e e e e e e e e e e e
13.10 MXFserver Integration . . . . . . . . . o 0 i e e e e e e e e e e e e
13.11 EVSIP Director Integration . . . . . . . . . . . .. . e
13.12 StorNext Integration . . . . . . . . . . . . o e e e e e e e e e e e
13.13 Cerify inte@ration . . . . . . . . v o v e e e e e e e e e e
13.14 FIMS implementation . . . . . . . . . o v v it e e e e e e e e e e e e e e e e e e

14 Troubleshooting and obtaining information

141 Selftest . . . o o o o e e e e e e e e e e e e e e e
14.2 Errorlog report . . . . . v o v i e e e e e e e e e e e e e e e e e e e e

15 Standalone Vidispine

15.1 Installing distribution-specific packages . . . . . . . . . . . Lo
152 QUICK SELUP .« . v v o ot e e e e e e e e e e e e e e e e e e
15.3 Service configuration . . . . . . . . .. oL e e e e e e e e e e e e e e e
154 ClIuStering . . . . o o v i ot e e e e e e e e e e e e e e

139
139
144
145
147
149

151
151
156

163
163
164
168
168
172

177
177

179
179
180
180

185
185
197
198
202
206
211
213
214
215
216
218
221
221
224

227
227
228




15.5 Upgrading . . . . . o . e e e e e e e e e e e e e e e e 236

15.6 Server configuration . . . . . . . . . ... e e e e e e e e e e e e e e e 237
15.7 Packagereference . . . . . . . . . . ... e 239
16 API Reference 241
16.1 AccesscontrolS . . . . . v o o L e e e e e e e e e e e e e 241
162 Audittrails . . . . . . L e e e e e e 247
16.3 Collections . . . . . . . . 0 i e e e e e e e e e e e e 249
16.4 Configuration . . . . . . . . o o it e e e e e e 257
16.5 EXportlocations . . . . . . o i i i e e e e e e e e e e e e e e e e e 264
16.6 External identifiers . . . . . . . . . . . L e e e e e e e e 266
167 Groupsandroles . . . . . . . . L e e e e e 269
16.8 Imports . . . . . . L e e e 273
16.9 Import settings . . . . . . . . . o L e e e 285
16.10 Ttems . . . . . . . e e e 287
16.11 JavaScript . . . . . . o o e e e e e e e e e e e e 332
16.12 J0bS . . o o o e e e e e e e e 333
16.13 Libraries . . . . . o v v i e e e e e e e e e e e e e e e e e e e 339
16.14 LICENSE . . . . . o o o et e e e e e e e e e e 344
16.15 Metadata . . . . . . . . . . e e e 346
16.16 Miscellaneous . . . . . . v v i i e e e e e e e e e e e e e e e e 389
16.17 Notifications . . . . . . v o ot e e e e e e e e e e e e e e e 392
16.18 Projects and Versions . . . . . . . . . ... oo e e e e e e e 419
16.19 Quotarules . . . . . . . e e e e e e e e e e e e e e 427
16.20 ReSOUICES . . . . . . o i i e e e e e e e e e e e e 429
16.21 Scheduling requestS . . . . . . . L . e e e e e e e e 431
16.22 Search . . . . . L e e e e e e e e e e 434
16.23 Self tests . . . o o v i e e e e e e e e e e e e e e 439
16.24 Shape tags . . . . . . . e e e 440
16.25 SIteS . . o o e e e e e e e e e e e e e 442
1626 Siterules . . . . . . .. e e e e e 443
16.27 StOTages . . v v v o e e e e e e e e e e e e e e e e e e e e e e e e 445
16.28 Task definitions . . . . . . . . . o i e e e e e e e e e e e e e 472
16.29 Task roups . . . . .« o v o o e e e e e e e e e e e e e 473
16.30 Transfers . . . . . . . . . L e e e e e e 476
1631 USEIS . . . v i e e e e e e e e e 477
16.32 Vidispine 1ogs . . . . . . o o e e e e e e e e e e e e e e 486
1633 XML Schema . . . . . . . o o e e e e e e e e e 487
17 Release Notes 601
I7.1 PrerequiSites . . . . . v v v i e e e e e e e e e e e e e e e e e e e e e e e e 601
17.2 Upgrade NOteS . . . . v v v v e e i e e e e e e e e e e e e e e e e e e 602
17.3 Version 4.4 . . . . . e e e e e e 603
17.4 Version 4.3 . . . . . L e e e e e e e 609
17.5 Version 4.2 . . . . . . e 614
HTTP Routing Table 629
Index 637







Vidispine REST APl Documentation, Release 4.2.2

The Vidispine REST API is a rich interface for creating custom media management solutions for the most complex
requirements.

This documentation is available as PDF here. The documentation comes with its own searching functionality, in the
upper left corner.

This reference documentation is divided into the following sections. Each section starts with an overview and is then
followed by introductory guides. The API reference section at the end explains the API and resources in detail.

CONTENTS 1



Vidispine REST APl Documentation, Release 4.2.2

2 CONTENTS



CHAPTER
ONE

INTRODUCTION AND DATA MODEL

1.1 Entities in Vidispine

Before start playing with the API, a short introduction to the data model might be valuable. The figure Overview of
the entities in Vidispine shows some of the entities that builds the assets in Vidispine.

4 L _— ch - J —
Y ollection
abstract Item

entity \ 1
/ \Collection /
4 ltem )
Shape Shape
Metadata
‘ Component J ‘ Component ’ EComponent ‘
- | ~
entity | Storage Storage
Figure 1.1: Overview of the entities in Vidispine
1.1.1 ltem

The item is the central piece in the data model. This corresponds to an asset in other systems. The item is an abstraction
of the physical content (essence) and holds information about the content (metadata). For information about how to




Vidispine REST APl Documentation, Release 4.2.2

create items, see /mports.

, N

Collection ||

- Item

P te
Vi
CRE
— A2

> Item

Lorem ipsum... A3
A4

e \

L Shape JJ MetadataJ

Other entities, further down in the hierarchy, may also hold metadata. The item has the richest functions for how
metadata can be stored, searched, and indexed. For information about metadata on an item, see [tem metadata.

The item also holds information about which users that are allowed to read and modify information (access control).
For information about access control, see Access control for items, libraries, collections.

1.1.2 Shape

Item

Component

A shape is a physical rendition of an item.
 For a video, it can be a low-resolution editing version, a web version, ...
» For a document, it can the the pages as images, extracted text, ...
* Etc.

For information about shapes, see /tem shapes.

A shape can have one or several shape tags. The shape tags are used when Vidispine selects which files that are being
transcoder, exported, thumbnailed, etc. A special shape tag is original, a shape tag that the imported source file

4 Chapter 1. Introduction and data model



Vidispine REST APl Documentation, Release 4.2.2

gets. The shape tag also contains the recipe for how to create new shapes using the transcoder. For information about
shape tags, see Shape tags and presets.

1.1.3 Component

Component

File

Each shape has one or more components. A media shape might for example contain:
* A container component
* Video components
* Audio components
Each component corresponds to one file content. There may be several copies of the file however.

The component contains information (technical metadata) about codes, resolution, frame rate and more. For informa-
tion about components, see Item shapes.

1.1.4 File and storage
The file entity represents a physical file on a file system. The file is stored on a storage. Vidispine manages all files,
and knows which copies of a file that have been made, and how they relate.

For information about files and storages, see Storages.

1.1.5 Library

A library is a list of items. A library can be created manually, by adding the items to a library, or dynamically, by
adding search results to a library. Libraries are useful when performing batch operations. Libraries can also be used
when creating rules.

For information about libraries, see Libraries.

1.1. Entities in Vidispine 5



Vidispine REST APl Documentation, Release 4.2.2

1.1.6 Collection

A collection is a list of items, libraries, and/or collections. Collections may have metadata and access rights, which
are applied to the items that belong to the collection. While the library is typically created from a search operation, the
collection is often used like a file system folder, to organize items.

For information about collections, see Collections.

1.2 RESTful API

The Vidispine API is a REST API (http://en.wikipedia.org/wiki/Representational_State_Transfer), using HTTP as a
transfer protocol.

1.2.1 Some basics in the RESTful API

URI

The URI is used as a resource (noun). This means each entity in Vidispine has its own (base) URI. Example:
* /API/item- All items
e /API/item/VX-204 - A particular item
e /API/item/VX-204/shape - All shapes for a particular item

e /API/item/VX-204/shape/VX-576 - A particular shape for a particular item

Method
The HTTP method is used as a verb. The verb is used to specify whether to Create (POST), Read (GET), Update (PUT)
or Delete (DELETE) an entity. This is called CRUD (http://en.wikipedia.org/wiki/Create,_read,_update_and_delete).
GET
* Get list of items/jobs or storage definition etc.
* Does not change anything to the database.
POST
* Start jobs, create new collection, etc.
» Will create one or more new entities in the database.
PUT
» Update existing entity, create new entity with supplied id.
* Identical sequential requests will not create new entities.
DELETE
¢ Delete items, abort jobs, etc.

* Identical sequential requests will not change anything (fails gracefully on subsequent requests).

6 Chapter 1. Introduction and data model


http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Vidispine REST APl Documentation, Release 4.2.2

Media type

Media types are important. To specify which media type the request has, HTTP header Content-type is used. To
specify which media type the caller accepts as response, HTTP header Accept is used. Most methods in Vidispine
read XML (application/xml) or JISON (application/ json) and write XML or JSON. Some methods reads
and/or writes text (text /plain), though.

Parameters

Parameters are given as guery parameters, matrix parameters, or header parameters.

Query parameters

Given at the end of the URI. The query parameters follows after a question mark (?), and each query parameter
key/value pair is delimited by an ampersand (&). An equal sign = is used to separate key and value. Keys and values
have to be URL encoded.

Matrix parameters

Matrix parameters are be applied to the segments of the path of the URI. The are used to discriminate or modify the
result. Before each matrix parameter key/value pair there should be a semicolon (; ). Equal signs are used to separate
key and value, and they have to be URL encoded.

In Vidispine, most of the times, the matrix parameters should be applied to the last segment, but before any query
parameters.

Header parameters

Header parameters are given in addition to the URIL. The Content-type and Accept headers have already been
mentioned. Other header worth mentioning is the RunAs header used for authentication (Run-As option), and the
index and size header, used at import (Import using the request body).

1.3 Common elements in the API

1.3.1 Identifiers

Most entities in Vidispine are identified by a Site ID. A Site ID is a string of the form: { site } — { serial } (example:
ATL-3033). Note that a Site ID is not unique within the system, there could be both an item and a job with the Site
ID vX-195, thus Site IDs are only unique within the entity type.

See also External identifiers.

Note:

* site is by the following regular expression form: [_A-Za-z] [_A-Za—-z0-9] . The default site name is VX.
This can be overridden with the Java system property com.vidispine.site.

* serial is of the following regular expression form: [1-9] [0-9] *

¢ site is maximum 10 characters, and case sensitive

1.3. Common elements in the API 7



Vidispine REST APl Documentation, Release 4.2.2

Long identifiers
In order to avoid confusion with non unique identifiers, it is possible to have Site IDs displayed as ITEM-VX-1,
JOB-VX-1, STORAGE-VX-3, etc. To do this, add the Java system property vidispine.identifier.format

with the value full. After this is done, a re-index of items and collections should be started. Now identifiers presented
in the system will be of the form described above.

1.3.2 Boolean operators

XML elements to handle boolean expressions:

or

<or>
<matching expression />

</or>
and

<and>
<matching expression />

</and>
not

<not>
<matching expression />
</not>

1.3.3 Text/plain formatting

CRLF

CRLF is used in text/plain representation when several values are returned, such as tuples or lists. CRLF is
represented by the two bytes 0d 0Oa in hexadecimal notation.

Tabbed tuples

Tabbed tuples are used in text/plain representation when several values are returned, such as tuples or lists.
Tabbed tuples delimits each value by the tab character, 09 in hexadecimal notation. Together with CR LF' it is used to
create lists of tuples. Users should ignore any output after the last defined element in the tuple, more elements may be
returned in future versions of the APIL.

8 Chapter 1. Introduction and data model



Vidispine REST APl Documentation, Release 4.2.2

1.4 Time representation

This section describes how time is handled in the system. There are four main categories related to time which will be
discussed here: time bases, time positions (a.k.a. time codes), time intervals and time durations.

1.4.1 Time bases

A time base describes how long one unit of time is in seconds using a ratio. This means that everything that has to do
with time is done using rational numbers. For instance, ten seconds in the time base used by PAL (1/25) would be 250
units, or 250/25.

Textual representations

When working with time bases it is sometimes necessary to construct textual representations with are human readable
and can be more easily output and entered into the system. To that end the following textual representations are valid
for time bases:

1. Its inverse as a rational number. The syntax is { denominator }[:{ numerator }], where numerator can be
omitted if it’s value is one.

2. A TimeBaseConstant string

TimeBaseConstant

The following time base constants are currently defined:

PAL 1/25
NTSC 1001/30000
NTSC30 | 1/30

Examples

1. 25,30000:1001, 48000
2. PAL, NTSC

XSL

TimeBaseType is the XML representation of a time base.

<xs:complexType name="TimeBaseType">
<xs:sequence>
<xs:element name="numerator" type="xs:int"/>
<xs:element name="denominator" type="xs:int"/>
</xs:sequence>
</xs:complexType>

Examples

1.4. Time representation 9



Vidispine REST APl Documentation, Release 4.2.2

<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>

1.4.2 Time codes

A time code is a representation of a point in time in some time base.

Textual representations

When working with time codes it is sometimes necessary to construct textual representations with are human readable
and can be more easily output and entered into the system. To that end the following textual representations are valid
for time codes:

1. A sample count and a time base. The syntax is { number of samples }[ @ { textual representation of time base
}1, where the time base is optional and implicitly one second if omitted. Examples: 124, 124222@44100,
400@30000:1001, 400@NTSC.

2. A decimal number. Example: 124 .25 (will be treated as 12425/100 or 497/4). This is strongly not
recommended, as most sampling frequencies do not have a finite decimal representation!

3. A decimal number and a time base. Example: 124 .25/PAL (will be treated as 12425/2500). This is also
not recommended!

4. The special constants -INF and +INF, representing the earlier than the earliest possible instant and later than the
latest possible instant, respectively.

XSL

TimeCodeType is the XML representation of a time code.

<xs:complexType name="TimeCodeType">
<xs:sequence>
<xs:element name="samples" type="xs:long"/>
<xs:element name="timeBase" type="tns:TimeBaseType"/>
</xs:sequence>
</xs:complexType>

Examples

<timeCode>
<samples>250</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</timeCode>

10 Chapter 1. Introduction and data model



Vidispine REST APl Documentation, Release 4.2.2

1.4.3 Time intervals

A time interval consists of two time codes: start and end. The time between them denotes the period of time which is
of interest. Note that start and end specify an interval like [start,end) in mathematical notation. In other words, the end
time code is not within the interval.

Specifying an interval where both time codes have different time bases is valid.

XSL

<xs:complexType name="TimeIntervalType">
<xXs:sequence>
<xs:element name="start" type="tns:TimeCodeType"/>
<xs:element name="end" type="tns:TimeCodeType"/>
</xs:sequence>
</xs:complexType>

Examples

Interval in PAL

<!-- Seconds 10-20 in PAL -->
<interval>
<start>
<samples>250</samples>
<timeBase>

<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</start>
<end>
<samples>500</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</end>
</interval>

Mixed time bases

<!-- Approximately seconds 10-20. Start in PALs time base, end in NTSCs time base (for instance cutt.
<interval>
<start>
<samples>250</samples>
<timeBase>

<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</start>
<end>
<samples>599</samples>
<timeBase>

1.4. Time representation 11



Vidispine REST APl Documentation, Release 4.2.2

<numerator>1001</numerator>
<denominator>30000</denominator>
</timeBase>
</end>
</interval>

1.4.4 Time durations

A time duration is the length of a time interval. It can be calculated by subtracting the end time code from the start
time code. This means it’s simply another time code, with its time line’s zero at the start of the interval.

1.4.5 Time span

A time span is a interval between two time codes.

There are two notations. The first notation is by using two time instants and separate them with a hyphen (-). The
first time instant is included in the interval, the second one is excluded. That is, in the interval 124-221, the instant
corresponding to second 124 is included in the interval, but not the instant corresponding to second 221. (E.g., if there
is an instant corresponding to second 220.9999999, it is included.)

The other notation is by using one time instant and one time duration, separate with a plus sign (+). The notation { a
}+{b}isequivalentto{a} -{a+b}.

1.5 Constants

An assorted list of constants found in the Vidispine API.
* Job states
» Job types
» Storage states
» Storage types
e File States

* System configuration

12 Chapter 1. Introduction and data model



CHAPTER
TWO

ITEMS AND METADATA

This chapter describes the Item, the central entity in the Vidispine data model, and how metadata (information about
the item) can be associated with the item.

2.1 Imports

Importing is the process of registering essence/media with Vidispine. As Vidispine works with files and objects, either
local or in the cloud, another way of putting it is to say that the media file(s) become under Vidispine’s supervision.

Note: Vidispine does not support machine control or baseband video  ingest
(http://en.wikipedia.org/wiki/Serial_digital_interface) . However, growing files are supported, including opera-

tions on items that are currently being ingested.

2.1.1 Importing items

There are several ways of importing media into Vidispine. Which one that is used depends on where the media is
located, the order of operations, and what automation that is required.

On a high level, the different ways of importing are:

Regular import This import uses a URI pointing outside of Vidispine storages to reference the source media.
Vidispine will make a copy of the source material (and sidecar files given by the user) to a Vidispine storage.

The job type for this type of import is PLACEHOLDER_IMPORT. For reference information, see lmport using
a URI.

Raw import Here, the caller supplies the material in the REST API call as data in the request body. This is useful
when the data is stored as a file at the caller’s point, for example when the end user is uploading information
in a web browser. It is also useful when the information resides in a location which Vidispine cannot reach, for
example behind a firewall.

Vidispine supports partial upload, so the caller can split the input in multiple parts in order to better handle
network problems or in order to parallelize uploads.

The job type for this type of import is RAW_IMPORT. Note that the job is not created until all parts of the file
has been uploaded. For reference information, see Import using the request body.

File import This import is used where the file is already located on a storage which is supervised by Vidispine. In
this type of import, no copying takes place. Instead, a new item is created, and the file is associated with the file.

The job type for this type of import is RAW_IMPORT. For reference information, see /mporting a file from a
storage.

13


http://en.wikipedia.org/wiki/Serial_digital_interface

Vidispine REST APl Documentation, Release 4.2.2

Auto-import This is a special case of file import, where no explicit call has to be done for every file. The user sets up
rules for how files are imported, and if any sidecar files are processed as well.

The job type for this type of import is AUTO_IMPORT. For reference information, see Auto-import rules.

Placeholder import A placeholder import is an import where the placeholder item and a placeholder shape are cre-
ated before any file is imported. When creating the placeholder shape, the caller gives item metadata and
information about the components. The creation of the placeholder item is a synchronous operation, and the
item id is immediately returned.

Using the item id, the caller can populate the placeholder shape with files, either by posting the URI or the raw
content to the components of the shape. The placeholder import is the import method that gives the highest
flexibility.

For reference information, see Placeholder imports.

Sidecar files

Sidecar files, containing metadata, subtitles, or other supplementary information, can be imported to an item either at
the same time as the item is imported, or afterwards using an sidecar import job.

2.1.2 Steps of import operation
Every import job consists of a number of job steps. Some of the the job steps run in parallel, and some in sequence.
These are the most important steps in an import job:

* Create entities. The item and the original shape is created. This will not take place if the caller already has
created the item before the job (placeholder import).

* Transfer media. The media is transferred from the source URI to a Vidispine storage. This will not take place if
the media is already located on a Vidispine storage (raw import, file import, auto-import).

¢ Initial media check. The media is checked using a shape deduction by the transcoder. The components of the
original shape are created.

* Transcoding. Using the information about the original shape and all shape tags given by the caller at the invo-
cation of the job, a transcoding task is created and given to the transcoder.

* A media check of all new shapes takes place, as soon as the transcoder has started to work.
* A final media check of the original media and transcoder shapes is done after the transcoder has finished.
e Any XMP, EXIF, or document metadata is extracted.

¢ Optionally, the original shape can be replaced by a transcoded shape. This is useful if one seeks to have one
“house format” as the original shape format, and all incoming material of other types should be converted into
the house format.

* Sidecar files are imported.

2.1.3 Transcoding

During import, the caller decides which shape tags that are to be created from the original media. By default, thumb-
nails are created according the to the shape tag definitions. The caller can choose which thumbnail service resource
to use, if multiple resources are set up. This is done using the query parameter thumbnailService. In addition
to thumbnails, full-resolution posters images can be created, by supplying a list of timecodes in the query parameter
createPosters. The creation of thumbnails can be disabled by setting the query parameter thumbnails to
false.

14 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2.1.4 Notifications

As with all jobs in Vidispine, the caller can be notified about the job progress by HTTP messages or other actions.
This is described in the Notifications section.

2.1.5 Adjusting import

The import API is very rich and contains several parameters. Fortunately, most of the time, the default values can be
used.

Import settings

Settings that are used during imports can be set prior to starting an import job. An example of such a setting are
access control lists. The settings can then be used by specifying the id of the settings profile using the query parameter
settings.

Special job metadata values

Special instructions can be supplied to the import job via the the query parameter jobmetadata= { key = value }.
Note that the equals sign is part of the value of the query parameter, so it has to be URL encoded (%3d)

Cut off start and end of video

Given that the video has SMPTE timecodes, an interval can be cut out using the metadata smpteTimeCode and
lastSmpteTimeCode.

Checksum on file transfer

New in version 4.2.8.

Normally, the checksum of the imported files will be computed asynchronously in the background. For
PLACEHOLDER_IMPORT jobs, by specifying the jobmetadata checksumMode%3Dtransfer, the checksum of
files will be computed during the transfer step of the job. See checksumMode.

2.2 Exports

An item export is the process of copying a file from storage to a location accessible by the system.

2.2.1 Exporting items
Exporting the files of an item is an asynchronous operation that is performed by an EXPORT job. The export resource
allows you to:

» Export files for an item.

 Export files for the items in a specific collection or library.

» Export files for specific shapes only.

» Export partial file content, by specifying a start and end time code.

2.2. Exports 15



Vidispine REST APl Documentation, Release 4.2.2

There are a number of operations that can be performed as part of an export. An export job can:
* Restore files from archive if necessary.
* Transcode into the selected formats.
» Rewrite the XMP in the exported files so that it matches the XMP in the item metadata.
* Create a sidecar XML file containing the item metadata.

¢ Transfer the files to the final location.

Example

To export the original shape of a specific item to a directory on the local file system:

POST /item/VX-191440/export?uri=file:///srv/exported/&tag=original

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169822</jobId>
<user>admin</user>
<started>2014-07-03T09:39:52.969%Z</started>
<status>READY</status>
<type>EXPORT</type>
<priority>MEDIUM</priority>

</JobDocument>

2.2.2 Export locations

It is possible to pre-define named export locations. When starting an export job, the location name can be passed as a
parameter, the files will then be exported to the URI associated with the export location.

PUT /API/export-location/default-exports
Content-Type: application/xml

<ExportLocationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>file:///srv/exported/</uri>
</ExportLocationDocument>

POST /item/VX-191440/export?locationName=default-exports&tag=original

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169824</jobId>
<user>admin</user>
<started>2014-07-03T09:49:12.9722</started>
<status>READY</status>
<type>EXPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

See the export location resource for more information.

File naming scripts

Export locations can have a JavaScript associated with them. These work the same way as file name scripts on
storages (see Naming files on storage). The difference is that for export locations, the script will not be retried if there

16 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

is a filename conflict. That is, if the filename generated by the script is already taken, then the existing file will be
overwritten.

There are two ways to add a script to an export location, either using XML, or by using the script resource.

Example

Adding a script to an export location using XML.

PUT /export-location/External FTP HTTP/1.1
Content-Type: application/xml

<ExportLocationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>ftp://user:password@10.2.23.25/export/</uri>

<script>filename = context.getOriginalFilename() + "." + context.getExtension();</script>

</ExportLocationDocument>

Example

Adding a script to an export location using the script REST resource.

PUT /export-location/External_ FTP/script HTTP/1.1
Content-Type: text/plain

filename = context.getOriginalFilename() + "." + context.getExtension();

2.3 ltem metadata

The metadata of an item consists of fields, groups and values that belong to a specific interval or timespan. Metadata
that does not apply to a specific interval, that is, it is non-timed, belong to the timespan with a start and end of —INF
and +INF, respectively.

A timespan describes an interval within the item, denoted by two time codes (a start value and an end value).
* A timespan contains sets of fields and groups.

* Groups are named sets of fields and groups.

* Fields have a name and a set of values of a specific type.

Examples of usage can be found at Creating fields/groups, modifying and moving metadata.

2.3.1 Fields

Before you can use fields and groups in the metadata of an item you need to define them. When defining a field you
must select its data type, that is, the type of values that will be accepted for the field. You can also restrict values
further by adding additional restrictions to the field.

PUT /metadata-field/event_type HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string-exact</type>
<stringRestriction>

2.3. ltem metadata 17



Vidispine REST APl Documentation, Release 4.2.2

<pattern>[a-z]+</pattern>
</stringRestriction>
</MetadataFieldDocument>

HTTP/1.1 200 OK

Field identifiers

Metadata field ids are case sensitive and must have a certain format to avoid conflicts with existing and possible future
fields used by Vidispine or other partners.

A metadata field id (name) is one of:

* Core set, the standard metadata set. Metadata field ids are assigned by Vidispine, and are of the regular expres-
sion form: [A-Za-z] [A—-Za—-z0-9] . maximum 32 characters.

* Common set. Metadata field ids have the form { category } _ { field-name }. The category is of the regular
expression form: [A-Za-z] [A-Za-z0-9] *, maximum 4 characters, and assigned by Vidispine to be used
by industry partners. field-name is the regular expression form: [A-Za-z] [A-Za-z0-9] . Total length of
id is maximum 32 characters, including the underscore ( _ ) character.

¢ Custom set. Metadata field ids have the form { custom-name } _ { field-name }. The custom-name is of
the regular expression form: [A-Za-z] [A-Za-z0-9] *, minimum 5 characters, and assigned by Vidispine.
field-name is the regular expression form: [A-Za-z] [A-Za-z0-9]*. Total length of id is maximum 32
characters, including the underscore ( __ ) character.

Data types

The data types at your disposal are:

Data type Description

date An ISO-8601 compatible timestamp.
float A floating point value.

integer An integer value.

string A string.

string-exact | A string that uses exact matching.
boolean A boolean value. (New in 4.1.)
timecode A time code value. (New in 4.1.)

string vs string-exact

During index time, the value of a string field is broken into small tokens, and then processed by various filters
before been indexed. By doing so, users would get nice phrase search results, but loose the ability of “exact match”.

The value of a string-exact field, on the other hand, is indexed directly as a single token. This makes a “exact
match” possible, and leads to smaller index size.

Note: In order to make search working properly, a re-index is required if the filed type is changed.
Noindex-types

Deprecated since version 4.1: The index element on the metadata field should be used instead to control if a field
should be indexed.

18 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

Use the noindex types for fields that will contain data that should not be indexed, for example if it will never be
searched for or if it contains data in some format, for example JSON or Base64-encoded binary data.

Data type Description

date-noindex An ISO-8601 compatible timestamp. No indexing will take place.
float-noindex A floating point value. No indexing will take place.
integer—noindex An integer value. No indexing will take place.
string-noindex A string. No indexing will take place.

boolean-noindex A boolean value. No indexing will take place. (New in 4.1.)
timecode-noindex | A time code value. No indexing will take place. (New in 4.1.)

Sortable types
Deprecated since version 3.2: Sortable types are deprecated. This is since any field type can be used for sorting as
long as it is indexed.

Sortable types can be used when searching to sort search results. A sortable field is one that uses a sortable types.
Fields that are sortable have two limitations:

1. They can only exist within non-timed metadata.

2. They cannot contain lists of values.

Data type Description

date-sortable An ISO-8601 compatible timestamp. Can be used for sorting.
float-sortable A floating point value. Can be used for sorting.
integer-sortable An integer value. Can be used for sorting.
string-sortable A string. Can be used for sorting.
string—exact-sortable | A string that uses exact matching. Can be used for sorting.

Restrictions

Add restrictions to metadata fields for further restrict the values that are to be allowed for a field. The table below
shows the different types of restrictions that exist.

Data Parameter Restriction
type
pattern A Java compatible regular expression
string (http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html)

minLength | A minimum allowed length of the string.
maxLength | A maximum allowed length of the string.
minInclusiveA minimum allowed value (inclusive).
maxInclusiveA maximum allowed value (inclusive).
minInclusiveA minimum allowed value (inclusive).
maxInclusiveA maximum allowed value (inclusive).

float

integer

For example, adding a field that only accept integer values in the interval [1, 5].

PUT /metadata-field/event_rating HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>integer</type>
<integerRestriction>
<minInclusive>l</minInclusive>
<maxInclusive>5</maxInclusive>

2.3. Item metadata 19


http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Vidispine REST APl Documentation, Release 4.2.2

</integerRestriction>
</MetadataFieldDocument>

Note: The naming of your field must follow certain rules, see Field identifiers.

Default values

You can assign a default value to a field if you want a field to be included when retrieving the metadata of an item even
if it has not been set.

PUT /metadata-field/testing_default HTTP/1.1
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>integer</type>
<defaultValue>0</defaultValue>

</MetadataFieldDocument>

HTTP/1.1 200 OK

Use the defaultValue parameter to control if the field should be included with the default value. Here item VX-12
does not have the field set:

GET /item/VX-12/metadata; field=testing_default;defaultValue=false HTTP/1.1

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-12">
<metadata>
<revision>VX-59,VX-60,VX-57</revision>
</metadata>
</item>
</MetadatalistDocument>

GET /item/VX-12/metadata; field=testing_default;defaultValue=true HTTP/1.1

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-12">
<metadata>
<revision>VX-59,VX-60,VX-57</revision>
<timespan end="+INF" start="-INF">
<field>
<name>testing_default</name>
<value>0</value>
</field>
</timespan>
</metadata>
</item>
</MetadatalistDocument>

2.3.2 Field groups

Metadata fields can be organized in zero or more field groups. Use groups to represents events or other types of objects
in the metadata.

20 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

PUT /metadata-field/field-group/event HTTP/1.1
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<data>
<key>description</key>
<value>An event in a clip</value>
</data>
<field>
<name>event_type</name>
<data>
<key>text</key>
<value>Here is some text.</value>
</data>
</field>
<field>
<name>event_rating</name>
</field>
<field>
<name>event_text</name>
<type>string</type>
<data>
<key>someextradata</key>
<value>Some additional data</value>
</data>
</field>
<access>
<user>admin</user>
<permission>DELETE</permission>
</access>
</MetadataFieldGroupDocument>

Fields in a group that have not yet been created will be created for you. The example above also shows how additional
metadata can be added to fields and groups.

2.3.3 Metadata schema

Finally, you can define a metadata schema to make sure that the metadata conforms to a specific data model.

For an example of how to define a metadata schema, see Defining a metadata schema. You can also define the schema
when creating field groups, as shown in Alternate way of creating a schema.

There are three different types of elements in the schema: groups, fields and nested groups. They all have in common
three attributes, name, min and max, and the two latter elements also have the attribute reference.

e Name is the name of the field or group that the element refers to. The table below shows the semantics of a
property for the different elements.

¢ Min specifies the minimum of times that the element can occur in that context and is a non-negative integer.

¢ Max specifies the maximum of times that the element can occur in that context and if set to a negative value it
will be interpreted as an infinite number of times.

2.3. Item metadata 21



Vidispine REST APl Documentation, Release 4.2.2

Group Nested groups Field
min | The minimum number of times | The minimum number of times that | The minimum number of times
that the group can occur at the group can occur inside the given | the field can occur inside the
top-level. group given group
max | The maximum number of The maximum number of times that | The maximum number of times
times that the group can occur | the group can occur inside the given | the field can occur inside the
at top-level. group given group
name| The name of the group. The name of the group. The name of the field.
ref- | - If set, controls whether the group If set, controls whether the group
er- must be a reference or not. must be a reference or not.
ence

Top-level groups are used to specify what a fields and groups that they are allowed to contain. Furthermore they
specify whether or not that group can exist outside of other groups. Nested groups and fields are used to specify the
content of a top-level group.

2.3.4 Hierarchical metadata

Complex data relations can be represented with hierarchical metadata. Let’s say we have three classes in our data
model, Organization, Employee and Project. An organization has a name, one or more employees and one or more
projects. An employee has a name and a title. A project has a name and one or more employees assigned to it. This
data model can be represented by using field groups to represent the classes and fields to represent the attributes.

Below an example of this data model is given:

(Organization )
name: My organization
- 2
Employee
name: Bob . \
Project
title: CEO name: Movie project
- - location: London, Berlin
Employee
name: Pete Employee
-
title: Director
< Employee >
Employee \ J
name: Andrew
<
title: Editor

As can be seen in the diagram, weak references are used in the project to point to the employees in the organization to
avoid data duplication. An equivalent XML of the above diagram:

<MetadataDocument>
<timespan start="-INEF" end="+INF">
<group>
<name>organization</name>
<field>
<name>name</name>
<value>My organization</value>
</field>
<group uuid="c9%e268e-03£f4-4378-8061-elc8b8f6b45c">
<name>employee</name>
<field>
<name>name</name>
<value>Bob</value>

22 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

</field>
<field>
<name>title</name>
<value>CEO</value>
</field>
</group>
<group uuid="96a333bl1-06£f0-4975-adee-78b93c2a7614">
<name>employee</name>
<field>
<name>name</name>
<value>Pete</value>
</field>
<field>
<name>title</name>
<value>Director</value>
</field>
</group>
<group uuid="82£92192-d2ef-422a-984a-b03cb0476a8a">
<name>employee</name>
<field>
<name>name</name>
<value>Andrew</value>
</field>
<field>
<name>title</name>
<value>Editor</value>
</field>
</group>
<group>
<name>project</name>
<field>
<name>name</name>
<value>Movie project</value>
</field>
<field>
<name>location</name>
<value>London</value>
<value>Berlin</value>
</field>
<group>
<name>enmployee</name>
<reference>9%96a333b1-06£f0-4975—adee-78b93c2a761l4</reference>
</group>
<group>
<name>employee</name>
<reference>82f92192-d2ef-422a-984a-b03cb0476a8a</reference>
</group>
</group>
</group>
</timespan>
</MetadataDocument>

2.3.5 Versioning

Metadata essentially consists of key-value pairs. The key of a value is its UUID, but can also often be described by
the quintuple (timespan, group, field name, track, language). However the latter does not guarantee unambiguity. If at
any point a key corresponds to more than one value, then a conflict exists.

2.3. Item metadata 23



Vidispine REST APl Documentation, Release 4.2.2

Change sets

A change set is a set of changes to the metadata. The change set has a unique id and can be related to other change
sets. The current revision of the metadata is essentially the superset of all change sets.

Example

If we start with a newly imported item, its metadata might look like this:

GET item/VX-250/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-250">
<metadata>
<revision>VX-30</revision>
<timespan end="+INF" start="-INEF">
<field>
<name>durationSeconds</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00" user="system">232.32</valu
</field>
<field>
<name>user</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.588401:00" user="system">admin</value:
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00" user="system">232320000@10
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

Assume two users, ul and u2, both wants to add a title, not knowing of each others changes.

PUT item/VX-250/metadata?revision=VX-30
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INF" start="-INF">
<field>
<name>title</name>
<value>ul’s title</value>
</field>
</timespan>
</MetadataDocument>

PUT item/VX-250/metadata?revision=VX-30
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INE" start="-INEF">
<field>
<name>title</name>
<value>u2’s title</value>
</field>
</timespan>
</MetadataDocument>

24 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

The result of the two operations will result in a conflict, because u2 did not know of the change made by ul.

GET item/VX-250/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-30,VX-32,VX-31</revision>
<timespan end="+INE" start="-INEF">
<field conflict="true">
<name>title</name>

<value change="VX-32" timestamp="2010-03-19T09:16:56.419+01:00"
<value change="VX-31" timestamp="2010-03-19T09:16:25.454+01:00"
</field>
<field>
<name>durationSeconds</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00"
</field>
<field>
<name>user</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.588+01:00"
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00"
</field>
</timespan>
</metadata>

</item>
</MetadataListDocument>

In order to resolve the conflict ul inserts another change set:

PUT item/VX-250/metadata?revision=VX-30,VX-32,VX-31
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INE" start="-INF">
<field>
<name>title</name>
<value>ul’s and u2’s title</value>
</field>
</timespan>
</MetadataDocument>

Which results in:

GET item/VX-250/metadata

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-30,VX-33</revision>
<timespan end="+INE" start="-INEF">
<field>
<name>title</name>
<value change="VX-33" timestamp="2010-03-19T09:21:28.692+01:00"
</field>
<field>
<name>durationSeconds</name>

user="u2">u2’s titlex,
user="ul">ul’s titlex,

user="system">232.32<,

_n

user="system">admin</

_n

user="system">2323200

user="ul">ul’s and u2’

2.3. Item metadata

25



Vidispine REST APl Documentation, Release 4.2.2

<value change="VX-30" timestamp="2010-03-19T09:08:09.563+01:00" user="system">232.32<,
</field>
<field>
<name>user</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.588+01:00" user="system">admin</
</field>
<field>
<name>durationTimeCode</name>
<value change="VX-30" timestamp="2010-03-19T09:08:09.576+01:00" user="system">2323200
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

A graph of this can be seen below. Worth noting is that it is the leaves of the graph that represent the current revision.

VX-32 VX-31 VX-30 VX-30 VX-30
[-INF,+INF] [-INF,+INF] [-INF,+INF] [-INF,+INF] [-INF,+INF]
title = u2's title title = ul's title durationSeconds = 232.32 user = admin durationTimeCode = 232320000@1000000

N/

VX-33
[-INF,+INF]
title = ul's and u2's title

2.3.6 Structure of metadata

Lists of values

A field can contain multiple values.

Example

Retrieving the current metadata:

GET /item/VX-250/metadata

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-7612">
<metadata>
<revision>VX-16113,VX-16114</revision>
<timespan end="+INF" start="-INE">
<field change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user="system" uuid="4
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user="system" uuid:
</field>
<field change="VX-16113" timestamp="2010-08-16T08:28:18.366+02:00" user="admin" uuid="d3!
<name>field_a</name>
<value change="VX-16113" timestamp="2010-08-16T08:28:18.366+02:00" user="admin" uuid=
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

26 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

Adding a new value to field_a, if the mode attribute is left out the existing value will be modified instead of adding

it as a new value.

PUT /item/VX-250/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INE" end="+INEF">
<field>
<name>field_a</name>
<value mode="add">my other value</value>
</field>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispi
<item>
<metadata>
<revision>VX-16113,VX-16114,VX-16115</revision>
<timespan end="+INE" start="-INEF">

<field change="VX-16115" timestamp="2010-08-16T08:35:18.
<name>field_a</name>
<value change="VX-16113" timestamp="2010-08-16T08:28:
<value change="VX-16115" timestamp="2010-08-16T08:35:
</field>
<field change="VX-16114" timestamp="2010-08-16T08:28:18.
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:
</field>
</timespan>
</metadata>

</item>
</MetadatalistDocument>

ne'>

550+02:00" user="admin" uuid="d3!
18.366+02:00" user="admin" uuid=!
18.550+02:00" user="admin" uuid='

592+02:00" user="system" uuid="4

18.592+02:00" user="system" uuids-

In order to modify either of the two values of the field the UUID must be specified, otherwise ambiguity will exist.

PUT /item/VX-250/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INEF">
<field>
<name>field_a</name>
<value>my new value</value>
</field>
</timespan>
</MetadataDocument>

400 An invalid parameter was entered
Context: metadata
Reason: Ambiguous path to value

Values can be removed by setting the mode attribute to remove.

PUT /item/VX-250/metadata

Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INEF">

2.3. Item metadata

27



Vidispine REST APl Documentation, Release 4.2.2

<field>
<name>field_a</name>
<value mode="remove" uuid="31602cd8-4cfa-4912-a6fb-d731841£880c"/>
</field>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<metadata>
<revision>VX-16114,VX-16115,VX-16117</revision>
<timespan end="+INE" start="-INEF">
<field change="VX-16117" timestamp="2010-08-16T08:48:21.474+02:00" user="admin" uuid="d3!
<name>field_a</name>
<value change="VX-16115" timestamp="2010-08-16T08:35:18.550+02:00" user="admin" uuid=
</field>
<field change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user="system" uuid="4
<name>shapeTag</name>
<value change="VX-16114" timestamp="2010-08-16T08:28:18.592+02:00" user="system" uuid:
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Weak references

Groups and fields can refer to other groups and fields by using weak references. Furthermore the metadata of other
items and collections as well as global metadata can be referenced.

Example: referencing global metadata

Adding some global metadata:

PUT /metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INE" end="+INE">
<group mode="add">
<name>test</name>
<field>
<name>example_name</name>
<value>Global name</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<revision>VX-76,VX-82,VX-80,VX-84</revision>
<timespan start="-INF" end="+INEF">
<group uuid="aaf7fde8-308d-4555-8a8b-8954f5ec5£fd9" user="admin" timestamp="2010-12-27T09:40:32.6
<name>test</name>
<field uuid="376e831b-8e8e-4cla-a7b2-dfdbb49d2e20" user="admin" timestamp="2010-12-27T09:40:32
<name>example_name</name>

28 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<value uuid="431d8078-fb05-42f0-87ae-a%ea73b8c4dl" user="admin" timestamp="2010-12-27T09:40::
</field>
</group>
</timespan>
</MetadataDocument>

Referencing it from an item:

PUT /item/VX-15/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INF">
<group mode="add">
<name>test</name>
<reference>aaf7fde8-308d-4555-8a8b-8954f5ec5fd9</reference>
</group>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-15">
<metadata>
<revision>VX-86,VX-87</revision>
<timespan end="+INF" start="-INEF">
<field change="VX-86" timestamp="2010-12-27T09:44:43.594+01:00" user="system" uuid="154c5blc-
<name>shapeTag</name>
<value change="VX-86" timestamp="2010-12-27T09:44:43.594+01:00" user="system" uuid="eb05a7!
</field>
<group change="VX-87" timestamp="2010-12-27T09:45:21.786+01:00" user="admin" uuid="7c3d0bl2-!
<name>test</name>
<referenced id="" type="global" uuid="aaf7fde8-308d-4555-8a8b-8954f5ec5fd9"/>
<field change="VX-84" timestamp="2010-12-27T09:40:32.667+01:00" user="admin" uuid="376e831}
<name>example_name</name>
<value change="VX-84" timestamp="2010-12-27T09:40:32.667+01:00" user="admin" uuid="431d8I
</field>
</group>
</timespan>
</metadata>
</item>
</MetadataListDocument>

2.3. Item metadata 29



Vidispine REST APl Documentation, Release 4.2.2

2.3.7 Metadata defined by the systems

representativeThumbnail]

representativeThumbnail
itemId

mediaType

shapeTag

created
originalAudioCodec
originalvVideoCodec
originalHeight
originalWidth
originalFormat
durationSeconds
durationTimeCode

Name Description
user The name of the user that imported the item.
shapeTag A shape tag that is used on a shape belonging to the item.

A thumbnail that is representative of the item. Initially set by the system, but
can be modified by a user.
INSame hs above, with the exception that no authentication is required.
The id of the item.
The type of the media, e.g. video/audio/binary.
A shape tag that is used on a shape belonging to the item.
The time when item was created.
The original audio codec of the essence.
The original video codec of the essence.
The original height of the essence.
The original width of the essence.
The original container format of the essence.
The duration of the item expressed in seconds.

The duration of the item expressed as a time code.

Transient metadata

Transient metadata is a special type

of metadata that is not revision controlled and only continuously updated by the

system. It can be used to create complex search queries. All transient metadata are prefixed by double underscores.

Name Description In-
dexed
__collection The id of the collection an item belongs to. Yes
__collection_size The number of collections that the item belongs to. Yes
__ancestor_collection The id of an ancestor collection of an item. Yes
__ancestor_collection_size | The number of ancestor collections of an item. Yes
__shape The id of a shape that belongs to the item. Yes
__shape_size The number of shapes that the item has. Yes
_ shape_last_added The creation date of the newest shape of the item. Yes
__shapetag_{tag}_hash[_{a}]| The checksum of a file of the item, where a is the algorithm. | Yes
__placeholder_shape_size The number of placeholder shapes that the item has. Yes
__version The essence version numbers. Yes
__version_size The number of essence versions that the item has. Yes
__storage The id of a storage that has files that belongs to the item. Yes
__storage_size The number of storages that has files that belongs to the Yes
item.

__storagegroup The id of a group that has files that belongs to the item. Yes
__storagegroup_size The number of groups that has files that belongs to the item. | Yes
__sequence The format of a sequence that belongs to the item. Yes
__sequence_size The number of sequences that the item has. Yes
__metadata_last_modified The time of the last metadata update. Yes

For collections, the following transient metadata fields exist:

30

Chapter 2. Items and Metadata




Vidispine REST APl Documentation, Release 4.2.2

Name Description Indexed
__child_collection The id of the collection that the collection contains. Yes
__child_collection_size The number of collections that the collection contains. Yes
_ _parent_collection The id of the collection that the collection belongs to. Yes
_ _parent_collection_size The number of collections that the collection belongs to. Yes
__ancestor_collection The id of an ancestor collection of a collection. Yes
__ancestor_collection_size | The number of ancestor collections of a collection. Yes
__metadata_last_modified The time of the last metadata update. Yes
_ folder_mapped True if the collection maps to a folder, else false. Yes
__child_folder_collection The id of the folder collection that the collection contains. Yes
__parent_folder_collection | The id of the folder collection that the collection belongs to. | Yes

File metadata

Metadata can be parsed from some file formats. The metadata is inserted as non-temporal metadata contained in
different groups, depending on the source of the metadata. The exact structure of the groups may differ based on the
encountered metadata. The parsing of file metadata must be enabled in the configuration.

Name Type | Description

Xmp_root Group | The root group containing all XMP metadata.

document_root Group | The root group for document metadata present in Office and PDF files.
document_text Field The text present in the document

document_metadata | Group | The group containing the metadata of the document.

2.4

Searching for items (and collections)

2.4.1 Searching in Vidispine

Item and collection searching in Vidispine is implemented using Solr as backend. This allows functionality such as
boolean operators, faceted searching, term highlighting, search term suggestions, etc. It is possible to search for just
items, just collections, or both at the same time, depending on which RESTful resource the search request is made to
(/item, /collection or /search). The search criteria are expressed using an XML or JSON document of type
ItemSearchDocument, described in more detail below.

Tip: For best performance

Don’t retrieve the hit count if you don’t use it.
Use filters if possible as these can be cached separately and do not affect the score nor highlighting.

Disable full text indexing for fields that contain JSON or other content that should not be included in the full text
index.

Only fetch the specific metadata fields and groups that you need instead of fetching all metadata. See Get
information.

If you only want to search in the generic metadata, or if your application does not use timed metadata, then
make sure to specify <intervals>generic</intervals>.

2.4.2 Search history

Vidispine stores the search document, as well as the timestamp and user for all searches that are made. If the same
user makes an identical search twice, only one entry will be shown in the search history, with the timestamp of the last

2.4. Searching for items (and collections) 31



Vidispine REST APl Documentation, Release 4.2.2

search.

2.4.3 Queries

Boolean operators

Boolean operators AND, OR and NOT can be used in search queries. A boolean operator can contain zero or more
field-value pairs and zero or more boolean operators.

Implicit operators

If no operators are specified operators are implicitly added using the following rules:

Multiple values within a field

If a field contains multiple values, an implicit OR operator is added.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
<value>mp4</value>
</field>
</ItemSearchDocument>

is logically equivalent to

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mp4</value>
</field>
</operator>
</ItemSearchDocument>

Multiple field elements at top level

If a document has multiple field elements at top level, an implicit AND operator is added.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mp4</value>
</field>
</ItemSearchDocument>

32 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

is logically equivalent to

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="AND">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<field>
<name>originalFormat</name>
<value>mp4</value>
</field>
</operator>
</ItemSearchDocument>

Text elements

In version 1 of the query syntax text elements are added with an implicit AND operator, and in version 2 it’s an implicit
OR.

Example

Searching for items that were not created within the last week and have either the formats mp4 or dv.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="AND">
<operator operation="NOT">
<field>
<name>created</name>
<range>
<value>NOW-7DAYS</value>
<value>NOW</value>
</range>
</field>
</operator>
<field>
<name>originalFormat</name>
<value>mpi4</value>
<value>dv</value>
</field>
</operator>
</ItemSearchDocument>

Phrase search

Vidispine supports wildcard search and phrase search for field type string and string—exact. A phrase is a
group of words surrounded by double quotes, such as “foo bar”.

Wildcard search

The wildcard special character in Vidispine is *, meaning matching zero or more sequential characters.

2.4. Searching for items (and collections) 33



Vidispine REST APl Documentation, Release 4.2.2

he* | words start with”’he”, like he, hey, hello
h*e | will match he, hope, house, etc.
*he | words end with “he”, like he, the.

Note: wildcard in a phrase search is not supported (e.g. "foo b*" won’t be able to find foo bar).

Search intervals

By setting <interals> in the ItemSearchDocument, search criteria can be applied to metadata within different ranges
accordingly:

generic | only search generic metadata, a.k.a metadata inside (-INF, +INF)
timed search metadata within ranges other than (-INF, +INF)
all search metadata both timed and generic metadata (default option)

For example, search items with only timed metadata containing originalFormat=dv:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>originalFormat</name>
<value>dv</value>
</field>
<intervals>timed</intervals>
</ItemSearchDocument>

Group search

New in version 4.3.

Searching items by its metadata groups are supported.

Example

To find items with any groups:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
</group>

</ItemSearchDocument>

To find items without any groups:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<group>
</group>
</operator>
</ItemSearchDocument>

To find items without a “movie_info” group:

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<group>
<name>movie_info</name>
</group>

34 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

</operator>
</ItemSearchDocument>

To find items with a “movie_info” group containing two fields with specific values. Note that the AND is implicit.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
<name>movie_info</name>
<field>
<name>movie_name</name>
<value>StarWars</value>
</field>
<field>
<name>episode_no</name>
<value>l</value>
</field>
</group>
</ItemSearchDocument>

To find items with a “movie_info” group with an episode number of either 1 or 2.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<group>
<name>movie_info</name>
<operator operation="OR">
<field>
<name>episode_no</name>
<value>1l</value>
</field>
<field>
<name>episode_no</name>
<value>2</value>
</field>
</operator>
</group>
</ItemSearchDocument>

To find items with either a “movie_info” or a “video_info” group.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<group>
<name>movie_info</name>
</group>
<group>
<name>video_info</name>
</group>
</operator>
</ItemSearchDocument>

Query syntax versions

In 4.2.0 a new query syntax was introduced. In order to use the new syntax, set the version attribute in the search
document to 2. If no version is set, the old query syntax will be used (version 1).

2.4. Searching for items (and collections) 35



Vidispine REST APl Documentation, Release 4.2.2

Version 1

1. The search value of a string-exact field is always interpreted literally.

2. The search value of a st ring field is interpreted literally only if it’s surrounded by quotation marks. In other
cases, implicit OR s are used in between the words.

3. Multiple values means OR. Multiple t ext elements means AND.

4. The noescape attribute is needed, if user want to search quotation marks or wildcard characters literally in a
string field;

<?xml version="1.0"?>
<ItemSearchDocument>
<field>
<name></name>
<value noescape="true">\"foo bar\"</value>
<value noescape="true">foo\x</value>
</field>
</ItemSearchDocument>

Version 2

1. One or more SPACE characters means logical AND. So <value>foo bar</value> and <value>foo
bar</value> means searching a field value containing both foo and bar.

2. Multiple values means OR. To search for foo or bar, in the title or text:

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>title</name>
<value>foo</value>
<value>bar</value>
</field>
</ItemSearchDocument>

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<text>foo</text>
<text>bar</text>

</ItemSearchDocument>

3. Special characters in Vidispine search are ", SPACE, \, and . Any character followed by \ is considered as
literal. so \ * means literal «, and \ £ is the same as the single character f.

4. The characters inside quotes are consider as literal, except ". A \" is still needed to represent a literal quote
inside quotes.

5. The noescape attribute of a metadata field value has been removed since Vidispine 4.2.

Operators and special characters

To highlight the differences between the two versions:

36 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

Query Version 1 Version 2
<text>foo bar</text> foo OR bar foo AND bar
<field>foo bar</field> foo OR bar foo AND bar
<text>foo</text> foo AND bar | foo OR bar
<text>bar</text>

<field>foo</field> foo OR bar* | foo OR bar
<field>bar</field>

“foo bar” “foo bar” “foo bar”
\’foo\” \\’fool\” 2 \’foo\”

foo* foo* foo*

foo\* foo\\* 2 foo\*
foo\_bar ° foo\\ OR bar % | foo\_bar

String types

An example of the differences when searching string fields, assuming a field value of foo bar.

foo bar ‘ ‘
Version 1 Version 2
string string-exact | string | string-exact
foo Y N Y N
FOO Y N Y N
foo bar Y Y Y N
"foo bar" | Y N 12 Y Y3
foo\ bar Y N Y YS
"foo xy" N N N N
foo xy Y N N 4 N

2.4.4 Filters

New in version 4.2.3.

A search filter is a query does not affect scoring nor highlighting, similar to a filter query in Solr. A filter can:

 Contain both fields and operators.

e Be named and excluded from facets.

1Use <operator operation="AND"> to search for foo AND bar for example.
2Use noescape=true to search for literal ", ~ and SPACE.

3Here _ means SPACE.

4Use <operator operation="AND"> to search for foo AND bar for example.
5Use noescape=true to search for literal ",  and SPACE.

SHere _ means SPACE.

7SPACE is a special character and needs to be escaped in order to get literally meaning.
8The character " is interpreted literally.

91t’s a phrase search, and “string-exact” only have one token in the index, which the same as the query in this case.

T's foo OR xy in version 1, and foo AND xy in version 2.
''SPACE is a special character and needs to be escaped in order to get literally meaning.
12The character " is interpreted literally.

131t’s a phrase search, and “string-exact” only have one token in the index, which the same as the query in this case.

14It’s foo OR xy in version 1, and foo AND xy in version 2.

2.4. Searching for items (and collections)

37



Vidispine REST APl Documentation, Release 4.2.2

Example

<ItemSearchDocument>
<filter operation="OR" name="productType">
<field>
<name>type</name>
<value>pc</value>
</field>
<field>
<name>type</name>
<value>phone</value>
</field>
</filter>
</ItemSearchDocument>

2.4.5 Joins

New in version 4.2.2.

Joint searches on metadata of item, share and file are supported. The old search schema is extended with three new
search criterion types: <item>, <shape>, and <file>. Please refer to xm/Schema.xsd for the full schema.

Depending on the search result needed(items, shapes, or files), ItemSearchDocument,
ShapeSearchDocument or FileSearchDocument should be sent to Vidispine respectively.  Those
three search documents use the same syntax, only the document names are different.

Note:
l. Aversion = 2 document is needed in order to perform the joint search.

2. The <intervals> constrain only works for item metadata in a ITtemSearchDocument. It has not effect
in ShapeSearchDocument and FileSearchDocument.

Examples

Joins on item search

Find items containing shapes with metadata shapeCodec=mp4:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</ItemSearchDocument>

Find items that have generic metadata title = vidispine, and contain a shape with shapeCodec=mp4, and
contain a file with metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>

38 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<value>vidispine</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
<intervals>generic</intervals>
</ItemSearchDocument>

Find items that have generic metadata title = vidispine, and contain a shape with shapeCodec=mp4, and
contain a file with metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
<intervals>generic</intervals>
</ItemSearchDocument>

Find items that have metadata title = vidispine, and contain a shape with shapeCodec=mp4; the shape
must contain a file with metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>item</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>

2.4. Searching for items (and collections) 39



Vidispine REST APl Documentation, Release 4.2.2

</field>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
</shape>
</ItemSearchDocument>

Operators are also supported as part of a search criterion.

Find items that have metadata title = vidispine, or items that have metadata title = demo and contain
shapes with shapeCodec=mp4:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<operator operation="AND">
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</operator>
</operator>
<intervals>all</intervals>
</ItemSearchDocument>

Joins on search shapes

Find shapes belong to items that have metadata title = vidispine, and the shape should have a file with
metadata filetitle = demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ShapeSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
</item>
<shape>
<field>

40 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
</ShapeSearchDocument>

Find shapes belong to items that have files with metadata filetitle = demo, and metadata title =
vidispine:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ShapeSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>vidispine</value>
</field>
<file>
<field>
<name>filetitle</name>
<value>demo</value>
</field>
</file>
</item>
<shape>
<field>
<name>shapeCodec</name>
<value>mp4</value>
</field>
</shape>
</ShapeSearchDocument>

Joins on file search

Find files belong to items with metadata title=demo; it should also belongs to shapes with metadata
shape_title=shape

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FileSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
<shape>
<field>
<name>shape_title</name>
<value>shape</value>
</field>
</shape>
</FileSearchDocument>

2.4. Searching for items (and collections) 41



Vidispine REST APl Documentation, Release 4.2.2

Joins on collection search

New in version 4.2.4.

Find collections that have metadata title=vidispine or collections contains an item with metadata
title=demo:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>title</name>
<value>vidispine</value>
</field>
<item>
<field>
<name>title</name>
<value>demo</value>
</field>
</item>
</operator>
</ItemSearchDocument>

To find items with specific shapes or files, use a shape or £ile query as a subquery of the item query.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>title</name>
<value>vidispine</value>
</field>
<item>
<shape>
<field>
<name>shape_title</name>
<value>demo</value>
</field>
</shape>
</item>
</ItemSearchDocument>

Important: Using an item subquery is only possible when the search interval is either generic or all. When
using t imed then no item subquery is allowed.

Find empty collections.
New in version 4.2.5.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="NOT">
<item>
</item>
</operator>
</ItemSearchDocument>

42 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2.4.6 Highlighting

Highlighting can be enabled to determine which part of the metadata that matched the query.
Changed in version 4.2.4: Use the field element to enable highlighting for a certain set of fields only.

<highlight>
<field>title</field>
</highlight>

Example

PUT /item
Content-Type: application/xml

<ItemSearchDocument>
<field>
<name>title</name> <!—-—- Search for the words "interview" or "credits" within the title ——>
<value>interview</value>
<value>credits</value>

</field>

<highlight> <!/-- Having a highlight element will enable highlighting even if it is empty -->
<matchingOnly>true</matchingOnly> </-- Only highlight fields that actually matched the query.
<prefix>[</prefix> <!-—- A string that appears before the highlighted text —->
<suffix>]</suffix> <!-- A string that appears after the highlighted text ——>

</highlight>

</ItemSearchDocument>

<ItemListDocument>

<item 1d="VX-123" start="-INF" end="+INF"> <!—— Matches 1in the document were on the interval [—INI
<timespan start="-INF" end="100"> <!-- One match on [-INF, 100] -->
<field>title</field>
<value>[Interview] with the CEO.</value> <!/-- The word "interview" is highlighted with the .
</timespan>
<timespan start="400" end="+INF"> <!-- Another match on [400, +INF] —-—>
<field>title</field>
<value>Closing [credits]</value> <!-- The word "credits" is highlighted with the suffix and
</timespan>
</item>

</ItemListDocument>

2.4.7 Sorting

Results can be sorted using sortable fields. Multiple fields can be used for sorting and are used in the order they are
given.

It is also possible to sort by relevance by specifying _relevance as the field name.

Changed in version 4.2.4: Specify _type to sort by type. The type of an item is item and collection for
collections, so if you want collections first in the results, then sort on _t ype in ascending order.

Changed in version 3.2: Any field can be used for sorting, it does not need to flagged as sortable. If a field contains
multiple values: ascending order will compare with its minimum value and descending order will compare with its
maximum value.

2.4. Searching for items (and collections) 43



Vidispine REST APl Documentation, Release 4.2.2

Example

Listing all items sorted according to length in descending order and format in ascending order.

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<sort>
<field>durationSeconds</£field>
<order>descending</order>
</sort>
<sort>
<field>originalFormat</field>
<order>ascending</order>
</sort>
</ItemSearchDocument>

2.4.8 Faceting

Faceting is used to show number of matching items for one or more sub-constraints for a given result-set. You might
for example be interested in displaying how many of the items returned from a search are of type video, how many
are of type audio, and how many are of type data.

There are two types of operations that can be performed, counting and specifying ranges. Counting means that it will
count the occurrences of each unique value. When specifying ranges, the number of occurrences within a certain range
is counted. Both the start and the end of a range are inclusive and “*” can be used to represent minimum or maximum.
Note that faceted search only can be used over non-timed metadata.

Example

item category | price
VX-251 | tv 100
VX-252 | radio 200
VX-253 | tv 300
VX-254 | phone 400
VX-255 | radio 500
VX-256 | radio 100
VX-257 | phone 200
VX-258 | phone 300
VX-259 | phone 200
VX-260 | phone 300

Consider the items in the table above, together with their metadata on the fields my_category and my_price. A
faceted search that should count the occurrences of each category and the occurrences of prices within the ranges [*,
199], [200, 399] and [400, *] might look like this:

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<facet count="false">
<field>my_price</field>
<range start="x" end="199"/>
<range start="200" end="399"/>

44 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<range start="400" end="+"/>

</facet>

<facet count="true">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>13</hits>

<item id="VX-248" start="-INF" end="+INEF"/>
<item i1d="VX-249" start="-INF" end="+INEF"/>
<item id="VX-250" start="-INF" end="+INF"/>
<item id="VX-251" start="-INF" end="+INEF"/>
<item i1d="VX-252" start="-INF" end="+INF"/>
<item id="VX-253" start="-INF" end="+INF"/>
<item id="VX-254" start="-INF" end="+INEF"/>
<item i1id="VX-255" start="-INF" end="+INF"/>
<item id="VX-256" start="-INF" end="+INF"/>
<item id="VX-257" start="-INF" end="+INEF"/>
<item i1d="VX-258" start="-INF" end="+INF"/>
<item id="VX-259" start="-INF" end="+INF"/>
<item id="VX-260" start="-INF" end="+INEF"/>
<facet>

<field>my_category</field>
<count fieldvValue="phone">5</count>
<count fieldValue="radio">3</count>
<count fieldValue="tv">2</count>
</facet>

<facet

>

<field>my_price</field>
<range start="«" end="199">2</range>
<range start="200" end="399">6</range>
<range start="400" end="x+">2</range>
</facet>
</ItemListDocument>

Now assume we want to see how the prices are distributed for phones, we could filter the search in the following

manner:

PUT /item
Content-T

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<filte

ype:

r>

<field>
<name>my_category</name>
<value>phone</value>

</f

ield>

</filter>

<facet count="false">
<field>my_price</field>
<range start="+" end="199"/>
<range start="200" end="399"/>

<range start="400"

</facet>

application/xml

end="* "/>

</ItemSearchDocument>

2.4. Searching for items (and collections) 45



Vidispine REST APl Documentation, Release 4.2.2

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>5</hits>

<item i1id="VX-254" start="-INF" end="+INEF"/>
<item 1d="VX-257" start="-INF" end="+INE"/>
<item id="VX-258" start="-INEF" end="+INE"/>
<item id="VX-259" start="-INF" end="+INEF"/>
<item id="VX-260" start="-INF" end="+INF"/>
<facet>

<field>my_price</field>
<range start="+" end="199">0</range>
<range start="200" end="399">4</range>
<range start="400" end="x">1</range>
</facet>
</ItemListDocument>

The opposite is also possible, to see the distribution of the categories over a range of prices.

PUT /item
Content-Type: application/xml
<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<filter>
<field>
<name>my_price</name>
<range start="200" end="399"/>
</field>
</filter>

<facet count="true">
<field>my_category</field>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>6</hits>

<item 1d="VX-252" start="-INF" end="+INE"/>
<item id="VX-253" start="-INF" end="+INF"/>
<item id="VX-257" start="-INF" end="+INF"/>
<item 1d="VX-258" start="-INF" end="+INE"/>
<item id="VX-259" start="-INF" end="+INF"/>
<item id="VX-260" start="-INF" end="+INF"/>
<facet>

<field>my_category</field>
<count fieldvValue="phone">4</count>
<count fieldValue="radio">1</count>
<count fieldvValue="tv">1</count>

</fac
</ItemLi

et>
stDocument>

Facet exclusion

New in version 4.2.3.

One or more search filters can be excluded from a facet using <exclude> tags. Facets can be named to make it
possible to distinguish between different facets, for example when using multiple facets on the same field but with

different excludes.

46

Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

The facet exclusion is similar to how one can tag and exclude
(https://wiki.apache.org/solr/SimpleFacetParameters#Tagging_and_excluding_Filters).

Example

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<filter name = "tvFilter">
<field>
<name>my_category</name>
<value>tv</value>
</field>
</filter>
<filter name = "priceFilter">
<field>
<name>my_price</name>
<range start="200" end="399"/>
</field>
</filter>

<facet count="true">
<field>my_category</field>
</facet>

<facet name="excludeTv" count="true">
<field>my_category</field>
<exclude>tvFilter</exclude>
<!-- <exclude>tvFilter2</exclude> Multiple exclusions —-—>
</facet>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item i1id="VX-253" start="-INF" end="+INEF"/>
<facet>
<field>my_category</field>
<count fieldvValue="tv">1</count>
<count fieldValue="phone">0</count>
<count fieldvValue="radio">0</count>
</facet>
<facet name="excludeTv">
<field>my_category</field>
<count fieldvValue="tv">4</count>
<count fieldValue="phone">1</count>
<count fieldvalue="radio">1</count>
</facet>
</ItemListDocument>

2.4.9 Spell checking

filters

in

Solr

Search terms can be checked against a dictionary. This enables “Did you mean...” types of searches. The dictionary

used is built from the search index and updated periodically.

Example

Consider a user is intending to searching for the “original duration” but misspells both words:

2.4. Searching for items (and collections)

47


https://wiki.apache.org/solr/SimpleFacetParameters#Tagging_and_excluding_Filters

Vidispine REST APl Documentation, Release 4.2.2

PUT /item
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>orignal durraton</text>

<suggestion> <!/-- Enables spell checking ——>
<maximumSuggestions>2</maximumSuggestions> <!/-- Optional: Specifies the maximum number of su
<accuracy>0.7</accuracy> <!-— Optional: A value between 0.0 (least accurate) and 1.0 (most a
</suggestion>

</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<hits>0</hits>
<suggestion>
<term>orignal</term> <!-- A misspelled search term —->
<!-— A 1list of suggestions, with the most likely suggestion being first ——>

<suggestion>original</suggestion>
<suggestion>ordinal</suggestion>
</suggestion>
<suggestion>
<term>durraton</term>
<suggestion>duration</suggestion>
</suggestion>
</ItemListDocument>

2.4.10 Autocompletion

Text can be autocompleted against the search index.

Example

Assuming the user intends to type “original duration”. The user first starts typing “original”:

PUT /search/autocomplete
Content-Type: application/xml

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>orig</text>
<maximumSuggestions>3</maximumSuggestions>

</AutocompleteRequestDocument>

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<suggestion>original</suggestion>
<suggestion>origin</suggestion>
<suggestion>originated</suggestion>

</AutocompleteResponseDocument>

Then the user continues to start typing “duration”:

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>original dur</text>
<maximumSuggestions>3</maximumSuggestions>

</AutocompleteRequestDocument>

48 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<suggestion>original duration</suggestion>
</AutocompleteResponseDocument>

Autocomplete on metadata fields

New in version 4.1.

You can also autocomplete on specific metadata fields. In order to make the autocompletion case insensitive, the
metadata field should be set as <index>extend</index>.

Example:

A metadata field foo_bar with config:

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string-exact</type>
<index>extend</index>

</MetadataFieldDocument>

CEINT3

and this filed contains multiple values: “Animal”, “Sky”, “Animal and Sky”, “animal and sky”
An auto-complete request with user input “animal a”:

PUT /search/autocomplete
Content-Type: application/xml

<AutocompleteRequestDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>foo_bar</field>
<text>animal a</text>

</AutocompleteRequestDocument>

will give result:

<AutocompleteResponseDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<suggestion>Animal and Sky</suggestion>
<suggestion>animal and sky</suggestion>

</AutocompleteResponseDocument>

2.5 Metadata projections

Vidispine supports two kinds of conversion tools for automating integration with other systems.

Projection A metadata projection is a bidirectional XSLT transformation, meant to simplify integration of the
Vidispine system with several third party systems.

Auto-projection The auto-projection is used to interact on metadata changes. For example, a change to one field may
automatically trigger changes to other fields.

2.5.1 Projections

A projection consists of an incoming and an outgoing XSLT transformation.

* The incoming projection transforms information in some format to a format supported by Vidispine.

2.5. Metadata projections 49



Vidispine REST APl Documentation, Release 4.2.2

* The outgoing projection transforms information from Vidispine to a some other format.

When you use projections to transform item metadata then the outgoing projection will transform a MetadataListDoc-
ument and the incoming projection must produce a MetadataDocument.

Projection id

Projections are identified by a projection id of the regular expression form: [_A-Za-z] [_A-Za-z0-9] %, maxi-
mum 32 characters. The projection is is case sensitive.

Example

This is an example of valid XSL:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:vs="http://xml.-

<xsl:template match="/">
<metadata>
<item><xsl:value-of select="vs:MetadatalListDocument/vs:item/@id"/></item>
<xsl:for-each select="vs:MetadatalListDocument/vs:item/vs:metadata/vs:timespan/vs:field">
<metadataField>
<name><xsl:value-of select="vs:name"/></name>
<xsl:for-each select="vs:value">
<value><xsl:value-of select="."/></value>
</xsl:for-each>
</metadataField>
</xsl:for-each>
</metadata>
</xsl:template>
</xsl:stylesheet>

2.5.2 XSLT 2.0

New in version 4.2.

XSL Transformations version 2.0 (http://www.w3.0org/TR/xslt20/) are supported. Remember to specify the correct
version in the stylesheet.

2.5.3 Job Information

New in version 4.2.

It is possible to access job information in the XSLT. This is done by adding the element
<vs:vsXSLTVersion>2</vs:vsXSLTVersion> (xmlns:vs="http://xml.vidispine.com/schema/vidispine’
at the global level of the XSLT. When the xs1tVersion option is set, the actual input to the transformation is no

longer a MetadatalListDocument, but an ExportInformationDocument. The new input contains two

element:

metadataList The same as the old input to the transformation.

job The current job, as outputted by /API/job/{jobid}?metadata=true.

50 Chapter 2. Items and Metadata


http://www.w3.org/TR/xslt20/

Vidispine REST APl Documentation, Release 4.2.2

Example

The following example uses both XSLT v2.0 and the job information:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:vs="http://xml.:
<vs:vsXSLTVersion>2</vs:vsXSLTVersion>
<xsl:template match="/">

<root>
<job>
<xsl:value-of select="vs:ExportInformationDocument/vs:job/vs:jobId/text ()"/>
</job>
<custom>
<xsl:for—-each select="vs:ExportInformationDocument/vs: job/vs:data[vs:key='custom’]/v:
<data>
<xsl:value-of select="."/>
</data>
</xsl:for-each>
</custom>
</root>

</xsl:template>
</xsl:stylesheet>

2.5.4 Auto-projection rules

The auto projection is used to interact on metadata changes. For example, a change to one field may automatically
trigger changes to other fields.

An AutoProjectionRuleDocument contains of four parts: <step>, <description>, <inputFilters> and
<triggers>.

Defining a rule
MetadataWrapperDocument

During the projection, a temporary structure called “MetadataWrapperDocument’” is created for manipulation.

A MetadataWrapperDocument contains some of the fields below, depending on the values of inputFilters in
AutoProjectionRuleDocument :

metadata The new incoming item metadata

oldMetadata The old metadata of the item

shapeMetadata The new incoming shape metadata

shape The shape list of the item

bulkyMetadata The new incoming bulky metadata of the item or shape
oldBulkyMetadata | The old bulky metadata of the item

Projection steps

Multiple projection steps can be defined in different <step>, with their execution order, description, and script/XSLT
respectively. Please note that <script> and <xslt> are used to hold JavaScript and XSLT respectively and each
step can only contain one of them.

Example:

2.5. Metadata projections 51



Vidispine REST APl Documentation, Release 4.2.2

<step>
<order>1</order>
<description>stepl description</description>
<script>...</script>

</step>

<step>
<order>2</order>
<description>step2 description</description>
<xslt>...</xslt>

</step>

Input filters

Input filter defines which information should goes into the MetadataWrapperDocument during the projection. There
are two kinds of filters: inputFilter and bulkyMetadataKeysRegex

Legal values of inputFilter are

oldMetadata Add old metadata of the item into the MetadataWrapperDocument
shapeDocument | Add old shape metadata of the item into the MetadataWrapperDocument

All bulky metadata of the item whose key matches the pattern defined in bulkyMetadataKeysRegex will go into
MetadataWrapperDocument. Multiple filters are allowed.

Example:

<inputFilters>
<inputFilter>oldMetadata</inputFilter>
<inputFilter>shapeDocument</inputFilter>
<bulkyMetadataKeysRegex>. »</bulkyMetadataKeysRegex>
</inputFilters>

Rule triggers

Rule triggers defines what kinds of metadata update triggers this rule. They are:

itemMetadata Rule triggered if there is an item metadata update
shapeMetadata | Rule triggered if there is a shape metadata update
bulkyMetadata | Rule triggered if there is a bulky metadata update

Multiple triggers are allowed.

<triggers>
<trigger>itemMetadata</trigger>
<trigger>shapeMetadata</trigger>
</triggers>

2.5.5 Auto-projection using JavaScript
A JavaScript projection is created by including the JavaScript in the script element of AutoProjectionRuleDocu-
ment. Vidispine is using Rhino (https://developer.mozilla.org/en-US/docs/Rhino) as the JavaScript engine
A number of global variables are defined for the script to use:
* api

* helper

52 Chapter 2. Items and Metadata


https://developer.mozilla.org/en-US/docs/Rhino

Vidispine REST APl Documentation, Release 4.2.2

* wrapper

The api object

Please see The api object.

The helper object

The helper object contains some convenient functions for generating a new metadata object.

helper.createMetadata ()
Returns a new MetadataType.

helper.createMetadataTimespan (start, end)
Returns a new MetadataType. Timespan.

Arguments
* start (string) — The start timecode.
* end (string) — The end timecode.

helper.createMetadataGroup (name)
Returns a new MetadataGroupValueType.

Arguments
* name (string) — The name of the group.

helper.generateMetadataField (name, value)
Returns a new MetadataFieldValueType.

Arguments
* name (string) — The name of the field.
* value (string) — The field value.

helper .metadataToStr (metadata)
Translate a metadata object to a string.

Arguments
* metadata — MetadataType

helper.log (0bj)
Write the value of obj.toString () to the server log.

The following example script

var metadata = helper.createMetadata();

var timespan = helper.createMetadataTimespan ("0", "100");
var group = helper.createMetadataGroup ("mrk_marker");
var fieldl = helper.createMetadataField("mrk _color", "red");

group.getField () .add(fieldl);
timespan.getGroup () .add (group) ;
metadata.getTimespan () .add (timespan) ;

will generate a metadata object like this:

2.5. Metadata projections

53



Vidispine REST APl Documentation, Release 4.2.2

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="0" end="100">
<group>
<name>mrk_marker</name>
<field>
<name>mrk_color</name>
<value>red</value>
</field>
</group>
</timespan>
</MetadataDocument>

The wrapper object

The wrapper object represents the MetadataWrapperDocument during the projection. Below are available functions:

wrapper .getMetadata ()
Get the new incoming item metadata.

Returns MetadataType.

wrapper .getOldMetadata ()
Get the old metadata of the item.

Returns MetadataListType.

wrapper .getShapeMetadata ()
Get the new incoming shape metadata.

Returns SimpleMetadataType.

wrapper .getShape ()
Get the shape list of the item.

Returns List<ShapeType>.

wrapper .getBulkyMetadata ()
Get the new incoming bulky metadata of the item/shape.

Returns BulkyMetadataType.

wrapper .getOldBulkyMetadata ()
Get the old bulky metadata of the item.

Returns BulkyMetadataType.

wrapper .getOldBulkyMetadata ()
Get the old bulky metadata of the item.

Returns BulkyMetadataType.

wrapper .setMetadata (value)
Assign a new metadata to the wrapper document.

Arguments
* value — MetadataType
There are two ways to apply projection results to an item:

1. If the rule is triggered by an item metadata update, one should manipulate the object reference returned by
wrapper.getMetadata () directly. Because Vidispine will take that object as the projection result.

54 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2. If the rule is triggered by a shape metadata update or bulky metadata update, one should use the api object to
update the item metadata:

var metadata = helper.createMetadata();

var xml = helper.metadataToStr (metadata);

var id = wrapper.getTargetId();

var result = api.path("item/" + id + "/metadata") .input (xml, "application/xml") .put ();

2.5.6 Auto-projection using XSLT

A XSLT projection is created by including the XSL script in the xs1 element of AutoProjectionRuleDocument.

The transformation result could either be a MetadataDocument or MetadataWrapperDocument. If the result is a
MetadataWrapperDocument, the value of metadata element will be used as the projection result.

During a shape/bulky metadata update, one need to set up another step using the JavaScript api object to update the
item metadata.

Example:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:vs="http://xml.:
<xsl:template match="/">
<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INF">
<xsl:for-each select="vs:MetadataWrapperDocument/vs:metadata/vs:timespan/vs:field">
<field>
<name>
<xsl:value-of select="vs:name"/>
</name>
<value><xsl:value-of select="vs:value"/>+projection</value>
</field>
</xsl:for-each>
</timespan>
</MetadataDocument>
</xsl:template>
</xsl:stylesheet>

2.6 Metadata migrations

Vidispine has support for migrating metadata to adhere to a new structure. For example, you might have changed the
group hierarchies in your metadata schema, and want to migrate old items and collections to the new schema. This
is done by posting a migration definition. Vidispine will then automatically go through all the metadata in the system
and migrate it.

2.6.1 Migration operations

There are a number of operations available for metadata migrations:
* Move This is used to move a field or a group from one position in the hierarchy to another.

* Rename This can be used to rename fields. Note that the new name must already be defined as a metadata field
in the system, and the data types of the old and new fields must be compatible (e.g. a string field cannot be
renamed to a date field, since it could cause invalid values to be introduced)

2.6. Metadata migrations 55



Vidispine REST APl Documentation, Release 4.2.2

* Delete Used to delete a field or a group from a metadata hierarchy.

2.6.2 Migration definition

Migrations are defined using XML (or JSON). Here is an example of a migration containing all of the above operations:

<MetadataSchemaMigrationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<move type="field">
<from>
<group>
<name>Film</name>
<field>
<name>actor</name>
</field>
</group>
</ from>
<to>
<group>
<name>Film</name>
<group>
<name>Personnel</name>
</group>
</group>
</to>
</move>
<rename>
<from>
<group>
<name>Film</name>
<field>
<name>internal_title</name>
</field>
</group>
</from>
<to>production_id</to>
</rename>
<delete type="group">
<target>
<group>
<name>Film</name>
<group>
<name>Soundtrack</name>
</group>
</group>
</target>
</delete>
</MetadataSchemaMigrationDocument>

The above migration would perform three operations:

* A move operation on any actor field that is located in the Timespan > Film group. It would instead be
placed in Timespan > Film > Personnel group.

* A rename operation. It would rename any internal_title field located in the Timespan > Film group.
It would rename it to production_id.

* A delete operation which would delete any group matching Timespan —-> Film -> Soundtrack.

56 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2.7 Subtitles

Vidispine supports adding subtitles to an item. They can then for example be exported to Final Cut. Subtitles can also
be used with sequences and can be included in the video when a sequence is rendered.

2.7.1 Subtitle metadata fields and groups

To add subtitles to a Vidispine item, the metadata field group st 1_subtitle must be used. The group should be
placed within a t imespan corresponding to the in- and out timecodes the subtitles should be displayed. Within this
group, the following fields can be set:

e st1_text. This sets the actual text which should be displayed. Multiple lines are delimited by a line feed
character.

stl_justification. Determines the justification of multiple lines of text.
left all lines are aligned to left border of text bounding box
center all lines are aligned in center of text bounding box

right all lines are aligned to right border of text bounding box

stl_xrelative. Horizontal position of base point relative to full video frame. (New in 4.2.6.)
0.0 left border
1.0 right border

stl_yrelative. Vertical position of base point relative to full video frame. (New in 4.2.6.)
0.0 top border
1.0 bottom border

st1l_horizontalbase. Horizontal position of base point relative to text bounding box. (New in 4.2.6.)
0.0 (or 1eft) base point is left border of bounding box.

0.5 (or center) base point is center of bounding box.

1.0 (or right) base point is right border of of bounding box.

* st1l_verticalbase. Vertical position of base point relative to text bounding box. (New in 4.2.6.)

0.0 (or top) base point is top border of of bounding box.

0.5 (or middle) base point is middle of bounding box.

1.0 (or bottom) base point is bottom border of bounding box.

stl_sizerelative. Height of font relative to full video frame.

st1l_color. Color of text. Can be standard colors (red) or hexadecimal (#££0000). (New in 4.4.1.)

stl_outline. Type of outline. (New in 4.4.1.)
(none) no outline
bar rectangular outline

stroke fat stroke around text

stl_outlinecolor. Color of outline. (New in 4.4.1.)

stl_outlinesize. Size (margin) of outline. (New in 4.4.1.)

2.7. Subtitles 57



Vidispine REST APl Documentation, Release 4.2.2

e st1l_font. Font of subtitle. (New in 4.4.1.)
monospace fixed-width font (default)
sans sans-serif font

serif font with serifs

Example

e stl_justification=left

e stl_xrelative=0.9

e stl_yrelative=0.5

* stl_horizontalbase=right
e stl_verticalbase=top

The subtitle language can be extracted from the .stl file itself or set using jobmetadata, key
subtitlelLanguage; jobmetadata has a higher priority.

Example

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="10@PAL" end="1000@25">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>left</value></field>
<field><name>stl_vertical</name><value>6</value></field>
<field><name>stl_text</name><value>some text&#13;&#10;actually two lines</value></field>
</group>
</timespan>
</MetadataDocument>

58 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2.7.2 Rendering subtitles in a sequence

New in version 4.0.

If you have a sequence attached to an item in Vidispine the subtitle metadata can be included in the output file. To
do this, you need to use a shape tag where <burnSubtitles>true</burnSubtitle> is setin the <video>
element. Note that overlapping subtitle timespans are not allowed and will cause the render job to fail.

Example

Let’s say we have an item VX-811 which has a sequence attached to it, and the following metadata:

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<timespan start="721400@PAL" end="72260CPAL">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>center</value></field>
<field><name>stl_text</name><value>No, I am your father.</value></field>
</group>
</timespan>
<timespan start="72320C@PAL" end="72490Q@PAL">
<group>
<name>stl_subtitle</name>
<field><name>stl_justification</name><value>center</value></field>
<field><name>stl_text</name><value>No... that’s not true!&#13;&#10;That’s impossible!</value><,
</group>
</timespan>

</MetadataDocument>

And we have the following shape-tag called MP4_512_SUB:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<bitrate>96000</bitrate>
</audio>
<video>
<scaling>
<width>512</width>
<height>288</height>
</scaling>
<codec>h264</codec>
<bitrate>2000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<burnSubtitles>true</burnSubtitles>
</video>
</TranscodePresetDocument>

Then a render job is started using:

POST /item/VX-8l1l/sequence/render?tag=MP4_512_SUB

2.7. Subtitles 59



Vidispine REST APl Documentation, Release 4.2.2

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine"><jobId>VX-1436</jobId><user>admin</use

This will render the sequence and include any subtitle metadata as subtitles in the output video.

2.7.3 TTML support

Subtitles for an item can also be retrieved in TTML format using Export to TTML.

GET /item/{id}/metadata/export/ttml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tt xmlns:ns2="http://www.w3.org/ns/ttml#styling" xmlns="http://www.w3.org/ns/ttml" xmlns:ns4="http:,
<head>
<metadata>
<ns6:documentMetadata>
<ns6:documentTargetAspectRatio>4:3</ns6:documentTargetAspectRatio>
<ns6:documentTotalNumberOfSubtitles>11</ns6:documentTotalNumberOfSubtitles>
<ns6:documentMaximumNumberOfDisplayableCharacterInAnyRow>40</ns6:documentMaximumNumberOfDisp.
<ns6:documentStartOfProgramme>00:00:00:00</ns6:documentStartOfProgramme>
<ns6:documentCountryOfOrigin>GB</ns6:documentCountryOfOrigin>
<ns6:documentPublisher>Institut fuer Rundfunktechnik </ns6:documentPublisher>
</ns6:documentMetadata>
</metadata>
<styling>
<style xml:id="textCenter" ns2:textAlign="center"/>
<style xml:id="defaultStyle" ns2:fontFamily="monospaceSansSerif" ns2:fontSize="1c 1lc" ns2:1linel
<style xml:id="whiteOnblackDH" ns2:fontSize="1lc 2c¢" ns2:color="white" ns2:backgroundColor="blac
</styling>
<layout>
<region xml:id="bottom" ns2:o0origin="10% 10%" ns2:extent="80% 80%" ns2:displayAlign="after" ns2
<region xml:id="top" ns2:o0rigin="10% 10%" ns2:extent="80% 80%" ns2:displayAlign="before" ns2:p:
</layout>
</head>
<body>
<Change to ’'iv’ xml:id="SGN1" style="defaultStyle">
<p region="top" style="textCenter" begin="00:00:00:00" end="00:00:02:10">
<br/>
<span style="whiteOnblackDH">two-line</span>
<br/>
<span style="whiteOnblackDH">top</span>
</p>
<p region="top" style="textCenter" begin="00:00:02:14" end="00:00:04:21">
<br/>
<span style="whiteOnblackDH">one-line top</span>
</p>
</div>
</body>
</tt>

60 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

2.8 Examples

2.8.1 Creating fields/groups, modifying and moving metadata

Let’s say that we have an item that contains a sports game. We want to record the goals that have occurred within the
game. To do this we have the triple (time, team, player), where the time is the real-world time when the goal took
place, the player that scored and the team the player plays for.

Creating the metadata fields
First to create the field for time, we choose the data type “date” since we want it to be indexed, but we will use it as
temporal metadata so it is not applicable to be a sortable field.

PUT /metadata-field/sport_time
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>date</type>
</MetadataFieldDocument>

As for creating the team and the player, we use the same reasoning above, with the exception of that we want a string
instead

PUT /metadata-field/sport_team
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>string</type>

</MetadataFieldDocument>

PUT /metadata-field/sport_player
Content-Type: application/xml

<MetadataFieldDocument xmlns="http://xml.vidispine.com/schema/vidispine”>

<type>string</type>
</MetadataFieldDocument>

Creating the metadata field group

With the fields created we now want a way to group these fields together so we create a field group called “goal”.

PUT /metadata-field/field-group/goal

Now we simply add the fields, created above, to the group.

PUT /metadata-field/field-group/goal/sport_time
PUT /metadata-field/field-group/goal/sport_team
PUT /metadata-field/field-group/goal/sport_player

Retrieving the group:

GET /metadata-field/field-group/goal

2.8. Examples 61



Vidispine REST APl Documentation, Release 4.2.2

<MetadataFieldListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field sortable="false">
<name>sport_time</name>
<type>date</type>
</field>
<field sortable="false">
<name>sport_player</name>
<type>string</type>
</field>
<field sortable="false">
<name>sport_team</name>
<type>string</type>
</field>
</MetadataFieldListDocument>

Modifying metadata
Let’s say that the item VX-7632 contains two goals that occurred during a game that matches
the triples (time=2010-09-05T16:20:33Z’, team="Sweden’, player="Pete’) and (time=‘2010-09-05T16:42:05Z2’,

team="Germany’, player="Bob’). Within the item the first goal can be seen between the time codes (1200, 1380)
and the second goal between the time codes (2700, 2940).

Each step will contain a diagram, where the dashed red line illustrates the semantics of the request being performed.

Adding the first goal

Adding the first goal without adding the player:

62 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

WE-TE32

[-INF, +INF]

I
I
I I shapeTag
| ariginal
I
I
I
| .
I sport_time
I —_— . — [11{"]._ 133]] 2010-00-05T16:20:332
sport_team
EDHI Sweden

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group mode="add">
<name>goal</name>
<field>
<name>sport_time</name>
<value>2010-09-05T16:20:33%Z2</value>
</field>
<field>
<name>sport_team</name>
<value>Sweden</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-7632">
<metadata>
<revision>VX-16295,VX-16296,VX-16299</revision>
<timespan end="1380" start="1200">
<group change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" uuid:

<name>goal</name>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1

2.8. Examples 63



Vidispine REST APl Documentation, Release 4.2.2

<name>sport_time</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1
<name>sport_team</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:
</field>
</group>
</timespan>
<timespan end="+INF" start="-INEF">
<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00" user="system" uuic
<name>shapeTag</name>
<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00" user="system"
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Adding the second goal

Adding the second goal, accidentally to same timespan as the first goal:

64 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

WE-TB32

[-INF, +INF]
shapeT.
—P m:i“aTE
[1200, 1380]
goal
I
I
I
I
I
I
I
I
I
I
I
I
I
I
b goal

spart_time
2010-0%-05T16:20:33%

sport_team

Sweden

spart_time
2010-0%-05T16:42:05%

sport_team

EErmany

sport_player
Bob

2.8. Examples

65



Vidispine REST APl Documentation, Release 4.2.2

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group mode="add">
<name>goal</name>
<field>
<name>sport_time</name>
<value>2010-09-05T16:42:05%Z2</value>
</field>
<field>
<name>sport_team</name>
<value>Germany</value>
</field>
<field>
<name>sport_player</name>
<value>Bob</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<item>
<metadata>
<revision>VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan end="1380" start="1200">

<group change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00"

<name>goal</name>

user="admin" uuids-

<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1

<name>sport_time</name>

<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:

</field>

<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1

<name>sport_team</name>

<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:

</field>
</group>

<group change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="admin" uuid:

<name>goal</name>

<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"

<name>sport_team</name>

user="admin"

1

<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="adm:

</field>

<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"

<name>sport_player</name>

user="admin"

1

<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="adm:

</field>

<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"

<name>sport_time</name>

user="admin"

1

<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="adm:

</field>
</group>
</timespan>
<timespan end="+INE" start="-INF">

<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00"

<name>shapeTag</name>

66 Chapter 2. Items and Metadata

user="system" uuic



Vidispine REST APl Documentation, Release 4.2.2

<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00" user="system"
</field>
</timespan>
</metadata>
</item>
</MetadataListDocument>

Modifying the first goal

Adding the missing player to first goal:

2.8. Examples 67



Vidispine REST APl Documentation, Release 4.2.2

WE-Te32
[-INF, +INF]
I shapeTag
original
[1200, 1380]
goal
goal

spart_time
2010-0%-05T16:20:33%

3 sport_team
Sweden

—» sport_player
Biob

spart_time
2010-0%-05T16:42:05%

sport_team

EErmany

. sport_player
Bob

68

Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

PUT /item/VX-7632/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="1200" end="1380">
<group uuid="1£89d35d-02b6-4871-aal7-62c5ed4992£4">
<name>goal</name>
<field mode="add">
<name>sport_player</name>
<value>Pete</value>
</field>
</group>
</timespan>
</MetadataDocument>

<MetadatalistDocument xmlns="http://xml.vidispine.com/schema/vidispine">

admin"

uuid:

n" 1

user="adm:
="admin" 1
user="adm:

user="

adm:

system" uuic

<item>
<metadata>
<revision>VX-16301,VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan end="1380" start="1200">
<group change="VX-16301" timestamp="2010-09-08T15:41:22.212+02:00" user="
<name>goal</name>
<field change="VX-16301" timestamp="2010-09-08T15:41:22.212+02:00" user="admin" 1
<name>sport_player</name>
<value change="VX-16301" timestamp="2010-09-08T15:41:22.212+02:00" user="adm:
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1
<name>sport_time</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:
</field>
<field change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="admin" 1
<name>sport_team</name>
<value change="VX-16299" timestamp="2010-09-08T15:36:01.836+02:00" user="adm:
</field>
</group>
<group change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="admin" uuid:
<name>goal</name>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="admi
<name>sport_team</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"
</field>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user=
<name>sport_player</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"
</field>
<field change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00" user="admin" 1
<name>sport_time</name>
<value change="VX-16300" timestamp="2010-09-08T15:38:28.715+02:00"
</field>
</group>
</timespan>
<timespan end="+INE" start="-INF">
<field change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00" user="
<name>shapeTag</name>
<value change="VX-16295" timestamp="2010-09-08T11:00:15.833+02:00" user="system"
</field>
</timespan>
</metadata>

2.8. Examples 69



Vidispine REST APl Documentation, Release 4.2.2

</item>
</MetadatalistDocument>

Moving metadata

Since the second is placed in the wrong timespan it can be corrected by moving it.

70 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

VX-7632
[-INF, +INF]
—
[llﬂl}_, ]_3E{I] > Eﬂlﬂj:-;;TEJ:SEZ
sport_team
Sweden

| sport_player
Biob

—— = — [2700, 2940]

spart_time
2010-0%-05T16:42:05%

sport_team

EErmany

. sport_player
Bob

2.8. Examples n



Vidispine REST APl Documentation, Release 4.2.2

PUT /item/VX-7632/metadata/move?start=2700&end=2940&uuid=0e9a54eb-0b90-4ed9-ac68-d2cb5d7abc73
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<revision>VX-16301,VX-16295,VX-16296,VX-16299,VX-16300</revision>
<timespan start="1200" end="1380">
<group uuid="1£89d35d-02b6-4871-aal7-62c5ed4992f4" user="admin" timestamp="2010-09-08T15:41::
<name>goal</name>
<field uuid="e374df6f-deb5-4d5e-bfea-dlc2aeb6df9aa" user="admin" timestamp="2010-09-08T15
<name>sport_player</name>
<value uuid="dbb77bcb-c3e5-4d9%9e-90a6-3114ecald091" user="admin" timestamp="2010-09-0
</field>
<field uuid="915b6023-£374-4432-832c-a2c48clefb56" user="admin" timestamp="2010-09-08T15
<name>sport_time</name>
<value uuid="cce8£89%9a-a220-4e53-8734-5831a3ad4eb77" user="admin" timestamp="2010-09-0¢
</field>
<field uuid="d9%d9%b21c-171d-402b-878d-cefabb3£f9727" user="admin" timestamp="2010-09-08T15
<name>sport_team</name>
<value uuid="7493df98-be67-4fb6-97fe-a8909e501207" user="admin" timestamp="2010-09-0
</field>
</group>
</timespan>
<timespan start="-INEF" end="+INF">
<field uuid="7c5c49f9-c740-4b0a-93e8-81490fb65799" user="system" timestamp="2010-09-08T11:00
<name>shapeTag</name>
<value uuid="9c2945d5-3480-436e-bfbb-2444e586961d" user="system" timestamp="2010-09-08T1:
</field>
</timespan>
<timespan start="2700" end="2940">
<group uuid="0e%a54eb-0b90-4ed9%-ac68-d2cb5d7abc73" user="admin" timestamp="2010-09-08T15:38:
<name>goal</name>
<field uuid="4e5ffd77-ab59-46fe-9939-47ab61df7523" user="admin" timestamp="2010-09-08T15
<name>sport_team</name>
<value uuid="2a64f141-b3aa-4686-973c-7c254a0b77cb" user="admin" timestamp="2010-09-0
</field>
<field uuid="2444055e-40e0-4906-8493-0£f68df82f01la" user="admin" timestamp="2010-09-08T15
<name>sport_player</name>
<value uuid="441404a4-882c-458a-af88-b2fad592d71c" user="admin" timestamp="2010-09-0
</field>
<field uuid="01d54bbb-d0le-4c6f-880e-1clcbc4e598e" user="admin" timestamp="2010-09-08T15
<name>sport_time</name>
<value uuid="71dd57e3-4a39-41ad-b351-78c4bc20acOb" user="admin" timestamp="2010-09-0
</field>
</group>
</timespan>
</MetadataDocument>

The metadata has now been corrected and contain the information that we wanted to record.

2.8.2 Defining a metadata schema

Based on the types in the metadata example we can specify a schema.

PUT /metadata-schema
Content-Type: application/xml

<MetadataSchemaDocument xmlns="http://xml.vidispine.com/schema/vidispine">

72 Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

<!-— The organization is optional and can exist [0,n] outside of groups ——>
<group name="organization" min="0" max="-1">

<!-— An organization has one or more employees ——>

<group name="employee" min="1" max="-1" reference="false"/>

<!-— An organization has one or more projects ——>

<group name="project" min="0" max="-1" reference="false"/>

<!-- An organization has exactly one name —-->

<field name="example_name" min="1" max="1" reference="false"/>
</group>

<!-- A project cannot exist outside of a group —-->
<group name="project" min="0" max="0">
<!-— A project has at least one employee, which has to be referenced —-->
<group name="employee" min="1" max="-1" reference="true"/>
<!-- A project has exactly one name ——>
<field name="example_name" min="1" max="1" reference="false"/>
<!-- A project has exactly one location element (it still can have more than one value) —-->
<field name="example_location" min="1" max="1" reference="false"/>
</group>

<!-- An employee cannot exist outside of a group ——>
<group name="employee" min="0" max="0">
<!-— An employee has exactly one name -->
<field name="example_name" min="1" max="1" reference="false"/>
<!-- An employee might have a title —-->
<field name="example_title" min="0" max="1" reference="false"/>
</group>
</MetadataSchemaDocument>

Retrieving the metadata of a new item:

GET /item/VX-1ll/metadata

<MetadatalListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-11">
<metadata>
<revision>VX-47</revision>
<timespan end="+INEF" start="-INE">
<field change="VX-47" timestamp="2010-12-17T13:15:04.495+01:00" user="system" uuid="0f4eclaOl-
<name>shapeTag</name>
<value change="VX-47" timestamp="2010-12-17T13:15:04.495+01:00" user="system" uuid="99a471¢
</field>
</timespan>
</metadata>
</item>
</MetadatalListDocument>

Validating it:
PUT /item/VX-1ll/metadata/validate
200 OK

Adding the organization in the example:

PUT /item/VX-11l/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">

2.8. Examples 73



Vidispine REST APl Documentation, Release 4.2.2

<timespan start="-INF" end="+INF">
<group>
<name>organization</name>
<field>
<name>example_name</name>
<value>My organization</value>
</field>
<group>
<name>employee</name>
<field>
<name>example_name</name>
<value>Bob</value>
</field>
<field>
<name>example_title</name>
<value>CEO</value>
</field>
</group>
<group uuid="A">
<name>employee</name>
<field>
<name>example_name</name>
<value>Pete</value>
</field>
<field>
<name>example_title</name>
<value>Director</value>
</field>
</group>
<group uuid="B">
<name>employee</name>
<field>
<name>example_name</name>
<value>Andrew</value>
</field>
<field>
<name>example_title</name>
<value>Editor</value>
</field>
</group>
<group>
<name>project</name>
<field>
<name>example_name</name>
<value>Movie project</value>
</field>
<field>
<name>example_location</name>
<value>London</value>
<value>Berlin</value>
</field>
<group>
<name>enployee</name>
<reference>A</reference>
</group>
<group>
<name>enmployee</name>
<reference>B</reference>

74

Chapter 2. Items and Metadata



Vidispine REST APl Documentation, Release 4.2.2

</group>
</group>
</group>
</timespan>
</MetadataDocument>

200 OK

Adding an employee without a name to the organization:

PUT /item/VX-1ll/metadata
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<group>
<name>organization</name>
<group mode="add">
<name>employee</name>
<field>
<name>example_title</name>
<value>Developer</value>
</field>
</group>
</group>
</timespan>
</MetadataDocument>

HTTP/1.1 400 An invalid parameter was entered
Context: metadata-schema
Reason: Too few of member example_name in group organization: 0 vs 1

Alternate way of creating a schema

A schema can also be built when creating and modifying metadata field groups. To create the schema above, the
following three requests can be made.

PUT /metadata-field/field-group/employee
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="0"/>
<field>
<name>example_name</name>
<schema min="1" max="1" reference="false"/>
</field>
<field>
<name>example_title</name>
<schema min="0" max="1" reference="false"/>
</field>
</MetadataFieldGroupDocument>

PUT /metadata-field/field-group/project
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="0"/>

2.8. Examples 75



Vidispine REST APl Documentation, Release 4.2.2

<field>

<name>example_name</name>

<schema min="1" max="1" reference="false"/>
</field>
<field>

<name>example_location</name>

<schema min="1" max="1" reference="false"/>

</field>
<group>

<name>employee</name>

<schema min="1" max="-1" reference="true"/>
</group>

</MetadataFieldGroupDocument>

PUT /metadata-field/field-group/organization
Content-Type: application/xml

<MetadataFieldGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<schema min="0" max="-1"/>
<field>
<name>example_name</name>
<schema min="1" max="1" reference="false"/>
</field>
<group>
<name>employee</name>
<schema min="1" max="-1" reference="false"/>
</group>
<group>
<name>project</name>
<schema min="0" max="-1" reference="false"/>
</group>
</MetadataFieldGroupDocument>

76 Chapter 2. Items and Metadata



CHAPTER
THREE

COLLECTIONS AND LIBRARIES

This chapter describes collections and libraries, two concepts in Vidispine used to group items. The main differences
between collections and libraries are:

¢ Collections can have metadata attached to them, libraries cannot.
* Collections can contain sub collections and can also contain libraries. Libraries can only contain items.

* Libraries can have dynamic content. You can attach an item search document to a library, and have it automati-
cally update its content based on which items match the query.

Both can be assigned access controls and storage rules that apply to the items, and for collections, libraries and sub
collections in them.

3.1 Collections

Collections are generic storage containers and can for example be used as:

¢ A sort of folder structure, where files are mapped as items and sub folders are mapped as sub collections in the
hierarchy.

* A simple container for a number of items and collections.
* A representation of a Non Linear Editor (NLE) “bin”.

A representation of an entity in your domain.

3.1.1 Creating collections
Create a collection using POST /collection. Once created you can add items, libraries or other collections to it,
add metadata or grant access to other users by adding access controls.

POST /collection?name=Pending%20review

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<loc>http://localhost:8080/API/collection/VX-16</loc>
<id>VxX-16</id>

<name>Pending review</name>
</CollectionDocument>

3.1.2 Searching for collections

You can search for collections in the same way as you can search for items.

77



Vidispine REST APl Documentation, Release 4.2.2

PUT /collection
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<text>Pending</text>
</ItemSearchDocument>

<CollectionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<hits>1</hits>
<collection>
<id>VX-16</id>
<name>Pending review</name>
</collection>
</CollectionListDocument>

Searching for collections with specific items

New in version 4.2.4.

Use an item query to find collections that contain specific items. For example, to find collections with a title contain-
ing ‘Peach’ or collections with items with similar titles:

<ItemSearchDocument version="2" xmlns="http://xml.vidispine.com/schema/vidispine">
<operator operation="OR">
<field>
<name>title</name>
<value>Peach</value>
</field>
<item>
<field>
<name>title</name>
<value>Peach</value>
</field>
</item>
</operator>
</ItemSearchDocument>

See Joins on collection search.

Searching in a collection

You can also search for items in a collections using PUT /collection/ (collection-id) /item. An alter-
native way of finding only items that exist in a collection is to query on the ___collection transient metadata field.
This is also more flexible as it allows you to find items in multiple collections, or using it as part of a more complex

query.

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>__collection</name>
<value>VX-16</value>
</field>
<operator operation="NOT">
<field>
<name>__collection</name>
<value>VX-1</value>
</field>

78 Chapter 3. Collections and Libraries



Vidispine REST APl Documentation, Release 4.2.2

</operator>
</ItemSearchDocument>

The difference between searching for items in a collection using PUT /collection/ (collection-id) /item
and PUT /item with a query on __collection is the default ordering, which is by collection order and by
creation date, respectively.

There is also the __ancestor_collection transient metadata field that allows you to find items that exist in a
collection or in a sub collection of that collection.

Listing collections that contain an item

If you want to see which collections contain an item, you can either look at the item metadata and look at the ”
__collection ” field. There will be one entry for each collection that includes the item. This, however, does not
take into account which collections a user has read access to. In order to see which collections contain an item with
read permissions honored you can use GET /item/ (item-id)/collection

3.1.3 Ordering collections

The entities in the collection are ordered, and new entities will be added at the end of the list. Use POST
/collection/ (collection-id) /order to change the order. The order will be enforced in requests to GET
/collection/ (collection-id) and GET /collection/ (collection-id) /item for example.

To get the same ordering as in GET /1item you will have to explicitly sort on the creation date, the created field,
which is the default.

3.1.4 Collections as folders

As mentioned in the introduction, collections could be used to represent folders, as a way for your users to organize
their items.

This could be an entirely logical grouping, or correspond to the actual directory structure of the items files on the file
system. To achieve the later, you can mark the collections as folder mapped collections. See Folder mapped collections
in the API reference on how to set this up.

3.1.5 Representative thumbnails

New in version 4.0.

A new metadata field has been added to the collection metadata: representativeItems. This field can contain
a list of items that will represent this collection. Vidispine will automatically get the representative thumbnails of each
item and add a transient metadata field on the collection metadata.

For example:

<field>
<name>representativeItems</name>
<value>VX-653</value>
<value>VX-657</value>
<value>VX-658</value>
<value>VX-659</value>

</field>

will add those values to the metadata:

3.1. Collections 79



Vidispine REST APl Documentation, Release 4.2.2

<field>
<name>__representativeThumbnails</name>
<value>/API/thumbnail/VX-2/VX-653;version=0/2100@NTSC30</value>
<value>/API/thumbnail/VX-2/VX-657;version=0/0@24000</value>
<value>/API/thumbnail/VX-2/VX-658;version=0/3300297@30000</value>
<value>/API/thumbnail/VX-2/VX-659;version=0/500@PAL</value>

</field>

<field>
<name>__representativeThumbnailsNoAuth</name>
<value>/APInoauth/thumbnail /VX-2/VX-653;version=0/2100@NTSC30?hash=9dfb29£8159532b1d3al19462e64c
<value>/APInoauth/thumbnail /VX-2/VX-657;version=0/0@24000?hash=bb75e99dd2f1£f961810c85fab99cd75f«,
<value>/APInocauth/thumbnail /VX-2/VX-658;version=0/3300297@30000?hash=696fa412368ccclacllfc30018e:
<value>/APInoauth/thumbnail /VX-2/VX-659;version=0/500@PAL?hash=0737888e52cb4e66041ba7dle58b22bex,

</field>

In combination with Stifching images, this can be used to easily create and cache a collection thumbnail without having
to track the item update notifications.

3.2 Libraries

Whereas collections are more of a generic container for entities, the strength of libraries lies in the ability to have the
library content dynamically updated based on a query.

Use libraries to for example:
* Manage the current search performed by a user.
* To represent saved searches created by your users.

* To implement dynamic storage rules or access control restrictions based on the metadata of items.

3.2.1 Creating libraries

When searching for items you can create a library containing the items matching the query by specifying
result=library. If used together with ; autoRefresh=true you can create a “saved search”. When ac-
cessing the library later, its content will return

PUT /item;updateMode=REPLACE; autoRefresh=TRUE?result=library HTTP/1.1
Accept: application/xml
Content-type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>project_priority</name>
<value>urgent</value>
</field>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<library>VxXx19</library>
<item>VX-13</item>
<item>VX-1l4</item>
<item>VX-71</item>
</ItemListDocument>

80 Chapter 3. Collections and Libraries



Vidispine REST APl Documentation, Release 4.2.2

Check the library settings to find out how a library was created, or why a library contains a specific set of items, for
example when using self-refreshing libraries.

GET /library/VX*67/settings

<LibrarySettingsDocument>
<id>VX*67</id>
<username>admin</username>
<updateMode>REPLACE</updateMode>
<autoRefresh>true</autoRefresh>
<query>
<field>
<name>originalWidth</name>
<range>
<value>640</value>
<value>720</value>
</range>
</field>
</query>
</LibrarySettingsDocument>

Libraries without a query
Libraries can also be created using POST /library. You will need to specify the items that the library should
contain, but this can also be changed afterwards.

POST /library HTTP/1.1
Content-Type: application/xml

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<item id="VX-250"/>
<item id="VX-1000"/>

</ItemListDocument>

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>Vxx48</uri>
</URIListDocument>

Check the library settings and you will see that it does not specify a query, in comparison to libraries created when
searching.

3.2.2 Automatic deletion
Libraries will be automatically deleted after having not being accessed for a period of 24 hours. There are some
exception to this rule. If any of the following conditions apply, the library will not be automatically deleted:

* The library is part of a collection

* The library has a storage rule set

The library has a site rule set
* The library has autoRefresh=true

e The library has an updateFrequencey set.

3.2. Libraries 81



Vidispine REST APl Documentation, Release 4.2.2

3.2.3 Self-refreshing libraries

Libraries can be set to keep their contents up to date with the queries in two ways (see the table below). The two
different methods can either be used together or separately. Neither of these modes will have an affect on transient
libraries, as they will always be kept up to date.

Name Values Description
autoRefresh trueor false | If true, items will be tracked as their metadata is modified.
(default)

updateFrequepasytive integer If set, the library will be rebuilt periodically. The integer describes the
minimum time, in minutes, between updates.

Having aut oRe fresh set means that metadata changes will have an almost immediate effect on libraries. But it has
the drawback that libraries using variables, such as a timestamp search containing ranges with the “NOW” variable,
will not be updated unless a user changes its metadata. To remedy this libraries can be updated periodically. From a
performance point of view though, it is more efficient to check if an item belongs to a library then to refresh an entire
library — so period updates should be done with care.

Caution: Queries involving variables
Using variables in queries, e.g. the use of the word “NOW” when searching timestamped metadata, is not reliable
for libraries unless they are either set as TRANSIENT or they are set to be updated periodically.

Update modes

MERGE In this mode any items that matches query will be added to the library without removing any existing items.
REPLACE Unlike MERGE, this mode will also remove items that no longer matches the query.

TRANSIENT This mode has the same semantics as REPLACE, with some important differences. It only contains
items on a logical basis, so instead of simply retrieving its items it needs to perform a search every time its
contents is being requested. This leads to a faster creation time than REPLACE, but slower lookup and cannot
be used to restrict item access.

Example

Creating a library that contains items created within the last 5 days.

PUT /item; autoRefresh=false;updateFrequency=60;updateMode=REPLACE?result=library
Content-Type: application/xml

<ItemSearchDocument>
<field>
<name>created</name>
<range>
<value>NOW-5DAYS</value>
<value>NOW</value>
</range>
</field>
</ItemSearchDocument>

Restrictions

At most 999 self-refreshing libraries can exist in the system simultaneously.

82 Chapter 3. Collections and Libraries



Vidispine REST APl Documentation, Release 4.2.2

If using the default Solr configuration, it is a good idea to set the useLucene property to speed up matching of
self-refreshing libraries.

3.2.4 Restricting access to items

Setting access controls on a library will cascade down on the items. This means that libraries can be used to batch
update access controls on a set of items. Note that this does not work on libraries with updateMode TRANSIENT.

3.2.5 Storage rules on libraries

You can set storage rules on libraries. All items belonging to the library will then be affected by the rule. Note that
this does not work on libraries with updateMode TRANSIENT. Having a storage rule on a library will also prevent
it from being automatically deleted.

3.2. Libraries 83



Vidispine REST APl Documentation, Release 4.2.2

84 Chapter 3. Collections and Libraries



CHAPTER
FOUR

SHAPES, COMPONENTS AND TRANSCODING

4.1 Iltem shapes

A shape is a physical representation of an item. Each shape is made up out of one or more components that correspond
to content of a file.

4.1.1 Shapes

Each item will typically have at least a single shape, the original shape, along with one or more alternate representa-
tions of the asset.

* For video, this can be a low-resolution version, a web version and a mobile version. Another example is if you
have multiple versions of the same video, but each with different audio or text tracks. Those versions would
then be separate shapes.

* For text this could be the word processor document format, a PDF or a plain text version.

You will find that the information extracted and presented for video and audio files is richer than what’s provided for
other type of files, such as PDFs or zip files. For the former information about the container and video- and audio
streams is provided, while the latter is typically presented as a shape with a binary component.

To distinguish between different shapes you can use tags. These are described in the Shape tags and presets section.

Importing shapes
Vidispine will create an original shape when an item is first imported. To import additional shapes to an item, for
example files created by an external transcoder, then that can be done by creating a SHAPE_ IMPORT job.
A shape import job will:
 Transfer content to a Vidispine supervised storage.
* Media check the imported file.
* Create a new shape and add it to the item.

Use the item shape resource to import new shapes. An image could for example be imported to and item, and tagged
with the large—jpg tag, using:

POST /item/VX-12/shape?uri=file:///srv/ftp/the-doctor. jpg&tag=large-jpg

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169826</jobId>
<user>admin</user>
<started>2014-07-03T18:21:09.795%2</started>

85



Vidispine REST APl Documentation, Release 4.2.2

<status>READY</status>

<type>SHAPE_IMPORT</type>

<priority>MEDIUM</priority>
</JobDocument >

4.1.2 Essence versions
If you have assets that change over time, and wish to track all of those versions, then you can use an item to represent
the asset and then import each update to the asset as a new essence version on the item.

Vidispine will return the shapes and thumbnails for the latest essence version by default, but you can of course select
to have older versions returned as well.

Shapes
Version 0

Shapes
Version 1

Shapes
Version 2

Creating a new essence version

New essence versions are created using ESSENCE_VERSION jobs. See Creating thumbnails and posters for the
different ways of starting such jobs. For example, creating a new essence version for an item by providing the location
of the new asset.

POST /item/VX-37/shape/essence?uri=file:///home/lisa/render-1. jpg

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-39</jobId>
<user>lisa</user>
<started>2014-07-03T06:52:45.1147</started>
<status>READY</status>
<type>ESSENCE_VERSION</type>
<priority>MEDIUM</priority>

</JobDocument >

This new image will then show up as the original shape of the item, and will be used as the input on any future
transcodes. By viewing the shape we can see that this shape belongs to a new essence version. Note that the essence
version numbers are zero-based.

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" id="VX-37">
<shape>
<id>vx-38</id>
<essenceVersion>1</essenceVersion>
<tag>original</tag>
<mimeType>image/jpeg</mimeType>
<containerComponent>. . .</containerComponent>
<videoComponent>. . .</videoComponent>
<metadata>
<field>
<key>originalFilename</key>
<value>render-1. jpg</value>
</field>
</metadata>

86 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

</shape>
</ItemDocument>

We can also see that there’s a new essence version by retrieving the essence versions for the items.

GET /item/VX-37/shape/version

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>http://localhost:8080/API/item/VX-37/shape/version/1l</uri>
<uri>http://localhost:8080/API/item/VX-37/shape/version/0</uri>
</URIListDocument>

4.1.3 Transcoding

An item can be transcoded either when it is imported or afterwards by using the item transcode resource. When
transcoding an already imported item a TRANSCODE job will be used. A transcode job will:

» Create any new entities, such as the new files that are about to appear.
¢ Create a transcoding task and submits it to a transcoder.
* Media check the new files and update the item.

The difference between transcoding while and after importing is that the former can be done in parallel to any transfers
that may be needed, while the latter is a serial task as the input files, the files from the original shape of the item, should
already exist on a storage managed by Vidispine.

Starting transcode jobs

The transcodes to perform are identified using shape tags that contains the transcode preset that the defines the desired
outputs.

Use the t ag parameter when starting an import job to transcode an item while it is being imported. See Transcoding
for more information on the subject.

POST /import?uri=file:///srv/incoming/media.mov&tag=lowres, android

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169819</jobId>
<user>admin</user>
<started>2014-07-03T07:20:14.2202</started>
<status>READY</status>
<type>PLACEHOLDER_IMPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

To transcode an existing item, use the transcode resource with the t ag parameter as above.

POST /item/VX-191440/transcode?tag=lowres, android

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169820</jobId>
<user>admin</user>
<started>2014-07-03T07:22:47.90072</started>
<status>READY</status>
<type>TRANSCODE</type>
<priority>MEDIUM</priority>

</JobDocument >

4.1. Item shapes 87



Vidispine REST APl Documentation, Release 4.2.2

Transcode progress

The progress of the transcode is available from the job, both as progress on the transcode step and as key-value
metadata on the job.

<task id="237">
<step>200</step>
<attempts>0</attempts>
<status>STARTED_ASYNCHRONOUS</status>
<timestamp>2014-07-03T07:27:58.030Z</timestamp>
<description>Transcoding.</description>
<progress total="100" unit="percent">75.0</progress>
<subStep>
<timestamp>2014-07-03T07:22:48.0512</timestamp>
<description>Starting transcode</description>
</subStep>
</task>

And from the job metadata, where you will find the t ranscode* job metadata, that also includes the estimated time
left and the progress expressed in the media time.

<data>
<key>transcodeDurations</key>
<value>8000000@1000000</value>

</data>

<data>
<key>transcodeMediaTimes</key>
<value>288000@48000</value>

</data>

<data>
<key>transcodeProgress</key>
<value>75.0</value>

</data>

<data>
<key>transcodeEstimatedTimeLeft</key>
<value>6.2072</value>

</data>

<data>
<key>transcodeWallTime</key>
<value>18.6216</value>

</data>

4.1.4 Thumbnailing

Thumbnails are by default created if an item is transcoded while being imported. To create thumbnails or posters for
an item, use a THUMBNAIL job. A thumbnail job will:

* Create a thumbnailing task and submit it to a transcoder.
» Update the representative thumbnail of the item.

The location of the representative thumbnail is stored in the item metadata, so if you wish to present a number of
items to a user, along with a thumbnail of each item, then it is recommended that you read the thumbnails from
the representativeThumbnail metadata field instead of fetching all thumbnails for all items. There is also
the representativeThumbnailNoAuth field that provides the thumbnail at a location that does not require
authentication.

88 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

<timespan start="-INF" end="+INF">
<field uuid="b578cfe7-cf8b-476f-866f-7027e0dbab42" user="system" timestamp="2014-07-03T09:23:24.17
<name>representativeThumbnail</name>
<value uuid="al59d13c-4a70-4e6a-83fd-36a7b0ef25af" user="system" timestamp="2014-07-03T09:23:24.:
</field>
<field uuid="12c6553d-7473-42bf-95b4-875afdlcac74" user="system" timestamp="2014-07-03T10:46:40.72¢
<name>representativeThumbnailNoAuth</name>
<value uuid="9070a04c-8755-426b-9446-3£f4857cb87el" user="system" timestamp="2014-07-03T10:46:40."
</field>
</timespan>

Starting a thumbnail job

Use the thumbnail resource to create thumbnail jobs for an item.

POST /item/VX-191440/thumbnail?createThumbnails=true

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-169821</jobId>
<user>admin</user>
<started>2014-07-03T08:46:09.9607</started>
<status>READY</status>
<type>THUMBNAIL</type>
<priority>MEDIUM</priority>

</JobDocument >

The thumbnails will be uploaded to the item as the job progresses. You can find them by inspecting the item. For
example:

GET /item/VX-191440?content=thumbnail

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" 1d="VX-191440">
<thumbnails>
<uri>http://localhost:8080/API/thumbnail /VX-2/VX-191440;version=0/0@PAL</uri>
</thumbnails>
</ItemDocument>

If you wish to see which thumbnails were created by a specific thumbnail job, then you can check the thumbnails
job metadata.

<data>
<key>thumbnails</key>
<value>{"[TC:0Q@PAL]":"http://localhost:8080/API/thumbnail/VX-2/VX-191440;version=0/0Q25"}</value>
</data>

4.1.5 Analyzing media

Shapes can be analyzed to detect for example detect cropping and silence. See Shape analysis.

4.2 Shape tags and presets

Shapes can be tagged in order to retrieve their file contents easily using Retrieving item information. The system adds
certain tags to shapes automatically during certain operations, such as an import job. Predefined tags can be seen in
the table below.

4.2. Shape tags and presets 89



Vidispine REST APl Documentation, Release 4.2.2

Tag Description
original | The first shape that was created for the item.

While shape tags serve as a “name tag” for shapes, they also contain the recipe for how new shape instances with the
shape tag should be constructed, or transcoded, from other shapes. This is defined using a transcode preset that defines
the format, codec, bitrate etc of the shapes.

4.2.1 Transcode presets
The transcode preset specifies the output format, codec and encoding settings that should be used when transcoding.
You can either

* Use one of the built in preset templates.

» Use one of the presets defined in this documentation.

* Define your own preset. See Transcode preset elements for more information.

Preset templates

New in version 4.0.3.

Vidispine comes with some preset templates built in. These can be added to the system by making a PUT request to
APIinit/preset-templates. These template tags have names that begin with double underscore and cannot
be overwritten (Also, shape tags with names starting with double underscore cannot be added to the system).

4.2.2 Scripting transcode presets

Transcode presets can be made dynamic by assigning a JavaScript to them. Made available to the script will be the
shape that is going to be transcoded as well as the unmodified preset. The shape can be used as input to determine for
example the original resolution of the media. For output the preset can be modified before it is sent to the transcoder.
An overview is given in the table below.

Mode | Identifier XML Type Java Type

input jobMetadata| - java.util.Map<String, String>

input metadata MetadataType com.vidispine.generated.MetadataType

input shape ShapeType com.vidispine.generated.ShapeType

output | preset TranscodePreset- com.vidispine.generated.TranscodePresetType
Type

The given data types are generated from the XML schema and belong to the package
com.vidispine.generated. They follow JavaBean standard, i.e. getters and setters for their attributes.

Caution: Lists of integer
When adding integers of a list, simply using integer literals will not work. Instead java.lang.Integer must
be used, for example: 1ist.add (new java.lang.Integer(5));

Examples

A preset that only produces two audio channels in the output

First we create a preset with only the formats and codecs set.

920 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

PUT /shape-tag/h264
Content-Type: application/xml

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
</audio>
<video>
<codec>h264</codec>
</video>
</TranscodePresetDocument>

200 OK

Then we add the script

PUT /shape-tag/h264/script
Content-Type: application/javascript

// Retrieve the channel count: <ShapeDocument><audioComponent><channelCount>
var channelCount = shape.getAudioComponent () .get (0) .getChannelCount () ;

// If we have more than two channels, limit it to the first two:

if (channelCount > 2) {
// Adding elements to <TranscodePresetDocument><audio><channel>
preset.getAudio () .getChannel () .add (new java.lang.Integer (0));
preset.getAudio () .getChannel () .add (new java.lang.Integer(l));

200 OK

The result preset will then look like this if the input shape has more than two audio channels:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<channel>0</channel>
<channel>1</channel>
</audio>
<video>
<codec>h264</codec>
</video>
</TranscodePresetDocument>

Scaling the output depending on the input

Using the same shape-tag as in the example above we can use the following script.

// Retrieve the width and height of the input
var width = shape.getVideoComponent () .get (0) .getResolution () .getWidth();
var height = shape.getVideoComponent () .get (0) .getResolution () .getHeight () ;

if (width == 720 && height == 608) {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType () ;
preset.getVideo () .setScaling(scaling);

4.2. Shape tags and presets 91



Vidispine REST APl Documentation, Release 4.2.2

// Crop 32 pixels from the top
scaling.setTop(32);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType();
targetDar.setHorizontal (4);

targetDar.setVertical (3);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (480);
scaling.setHeight (360);
} else if (height > 700) {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType () ;
preset.getVideo () .setScaling(scaling);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType();
targetDar.setHorizontal (16);

targetDar.setVertical (9);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (640);
scaling.setHeight (360);
} else {
// Create the scaling element
var scaling = new com.vidispine.generated.ScalingType () ;
preset.getVideo () .setScaling(scaling);

// Set the desired display aspect ratio

var targetDar = new com.vidispine.generated.AspectRatioType () ;
targetDar.setHorizontal (4);

targetDar.setVertical (3);

scaling.setTargetDAR (targetDar) ;

// Set the desired resolution
scaling.setWidth (320);
scaling.setHeight (240);

4.2.3 Transcode preset elements

This section highlights some of the settings and possibilities that are often useful when authoring a transcode preset.

Setting a preferred source tag

New in version 4.0.

It is possible to specify that another file than the original should be used as the source file when transcoding. This is
done using the preferredSourceTag element.

92 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

Burning in the timecode in the video

New in version 4.0.

Vidispine can burn the timecode into the output video. To enable this, set the burnTimecode element to true within
the video element.

Setting a maximum duration of a chunk in QuickTime files

New in version 4.1.

It is possible to specify a maximum duration for chunks in QuickTime files (MOV/MP4/3GPP). To set the duration
add the maxChunkDuration element to the TranscodePresetType.

Example: setting the maximum chunk duration to 2 seconds

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<maxChunkDuration>
<samples>50</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</maxChunkDuration>
<audio>
<codec>aac</codec>
<bitrate>320000</bitrate>
</audio>
<video>
<codec>h264</codec>
<bitrate>500000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<resolution>
<width>512</width>
<height>288</height>
</resolution>
</video>
</TranscodePresetDocument>

Mixing audio channels

New in version 4.0.

It is possible to define advanced mappings between input and output audio channels. This is done using the mix
element.

4.2. Shape tags and presets 93



Vidispine REST APl Documentation, Release 4.2.2

Example: mixing 5.1 audio into stereo

<TranscodePresetDocument xmlns="http://xml.vidispine

<format>mp4</format>

<audio>

<codec>aac</codec>
<bitrate>128000</bitrate>

.com/schema/vidispine">

<mix>
<input channel="0" stream="1" gain="0.5"/>
<input channel="1" stream="1" gain:"l.O"/>
<input channel="3" stream="1" gain="1.0"/>
<input channel="5" stream="1" gain="1.0"/>
</mix>
<mix>
<input channel="1" stream="1" gain="1.5"/>
<input channel="2" stream="1" gain="1.0"/>
<input channel="4" stream="1" gain="1.0"/>
<input channel="5" stream="1" gain="1.0"/>
</mix>
</audio>
<video>
<scaling>
<width>512</width>
<height>288</height>
</scaling>

<codec>h264</codec>

<bitrate>256000</bitrate>

<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>

</framerate>

</video>
</TranscodePresetDocument>

The value of the st ream attribute can be deduced from the input shape. The gain attribute is expressed linearly, i.e.
a value of 1.0 means a gain of 0 dB. Also, since the number of input channels will probably vary with different inputs,
this functionality is best utilized in conjunction with the JavaScript functionality described below.

The mix element can also be used to insert silent audio channels in the output.

Example: adding two silent audio channels in output

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>aac</codec>
<bitrate>128000</bitrate>
<mix silence="true"/>
<mix silence="true"/>
</audio>
<video>
<scaling>
<width>512</width>
<height>288</height>
</scaling>
<codec>h264</codec>
<bitrate>256000</bitrate>

94 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

<framerate>
<numerator>l</numerator>
<denominator>25</denominator>
</framerate>
</video>
</TranscodePresetDocument>

Splitting audio channels to mono files

New in version 4.1.

It is possible to split audio channels into separate mono audio files. And they can be renamed according to their
channel ids .

Example: split specific channels

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>wav</format>
<audio>
<codec>pcm_sl6le</codec>
<channel>0</channel>
<channel>3</channel>
<channel>5</channel>
<monoFile>true</monoFile>
</audio>
<video>
<noVideo>true</noVideo>
</video>
</TranscodePresetDocument>

Example: split all channels

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>wav</format>
<audio>
<codec>pcm_sl6le</codec>
<monoFile>true</monoFile>
<allChannel>true</allChannel>
</audio>
<video>
<noVideo>true</noVideo>
</video>
</TranscodePresetDocument>

Splitting audio channels to different output files

New in version 4.1.1.

It is possible to split audio channels into files that contain more than one channels. And they can be renamed according
to their channel ids.

4.2. Shape tags and presets 95



Vidispine REST APl Documentation, Release 4.2.2

Example

This preset below will produce three files:
1. A WAV file containing 1 audio stream with 2 channels.
2. A MOV file containing 2 audio streams, each stream has one channel.
3. A MP4 file containing only the video.

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<output>
<format>wav</format>
<codec>pcm_s241le</codec>
<channel>0</channel>
<channel>1</channel>
</output>
<output>
<format>mov</format>
<codec>aac</codec>
<bitrate>320000</bitrate>
<channel>2</channel>
<channel>3</channel>
<stream>1</stream>
<stream>1</stream>
</output>
</audio>
<video>
<codec>h264</codec>
<bitrate>1000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<resolution>
<width>512</width>
<height>288</height>
</resolution>
</video>
</TranscodePresetDocument>

Image overlays
One can overlay images on the output at specific positions and intervals by using the overlay element. Note that
the image is overlaid as is and will not be scaled in any way, meaning that you may want to overlay different images

depending on the output resolution. Specifying an overlay interval in an image preset is not supported. Only PNG
overlays are supported.

Multiple overlays are supported. (New in 4.4.)

Example: overlaying a logo

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<overlay>

96 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

<uri>http://example.com/logo.png</uri>
<x>10</x>
<y>30</y>
</overlay>
</TranscodePresetDocument>

4.2.4 Custom settings

Some codecs support fine-grained custom settings. These settings are specified by adding setting element inside
the video or audio element.

Common settings for video and image
thumbnailformat

By default, video thumbnails are JPEG and image thumbnails and PNG.
New in version 4.2.12.

This can be changed with thumbnailformat. Valid values are jpeg and png.
Video-only settings
sceneChangeThreshold

Can be used to control GOP structure based on scene changes for mpeg2video. By default, GOPs are adjusted
according to detected scene changes. Set to a very high number (1000000000) to disable scene change detection in
order to get equal-sized GOPs.

noTimeCodeTrack

If true, do not write time code track. Primarily used for MP4 and MOV containers.
Image-only settings

colorspace

Sets the color space to specified value. Valid values are CIELab, CMY, CMYK, Gray, HCL, HCLp, HSB, HSI, HSL,
HSV, HWB, Lab, LCH, LCHab, LCHuv, LMS, Log, Luv, OHTA, Rec601Luma, Rec601YCbCr, Rec709Luma,
Rec709YCbCr, RGB, scRGB, sRGB, Transparent, XYZ, YCbCr, YDbDr, YCC, YIQ, YPbPr, YUV.

profile

Sets a profile. Profiles must be installed on transcoder node ( /usr/share/color/icc).

strip

If t rue, strip profile info. If false, do not strip profile.

4.2. Shape tags and presets 97



Vidispine REST APl Documentation, Release 4.2.2

density
Set the density (resolution) of the image. The format is xRes[ "x" yRes] WHITESPACE ( "dpi" |
"dpcm" ). If only one value is set, the same resolution is used for x and y. By specifying dpi or dpcm, reso-

Iution can explicitly be set to mean pixels per inch or pixels per centimeter, respectively.

sharpen

New in version 4.4.3.

If t rue, sharpens the image. May produce better results after scaling.

4.3 Common presets

It is not always straightforward to construct a transcode preset that result in output with the desired format. Here are
some guidelines for some of the most common formats.

4.3.1 H264

The codec element should be set to h264. The default profile is Baseline. This can be overridden using the preset
element. The following values are accepted:

* baseline
e ipod
* main
* high

There are also AVC-Intra specific profiles, see below.

Example

An MP4 using the Main profile:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio>
<codec>mp3</codec>
<framerate>
<numerator>1l</numerator>
<denominator>44100</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1280</width>
<height>720</height>
</scaling>
<codec>h264</codec>

98 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

<bitrate>3000000</bitrate>

<framerate>
<numerator>l</numerator>
<denominator>25</denominator>

</framerate>

<preset>main</preset>

</video>
</TranscodePresetDocument>

4.3.2 AVC-Intra

To produce AVC-Intra output, the preset element should be set to intra50 or intral00 depending on desired
output. Also add a setting of codecTagString to further specify the variant of AVC-Intra. The possible values are:

* ai5p - 50M 720p24/p30/p60
* ai5q - 50M 720p25/p50

* 2156 — 50M 1080i60

* ai55—50M 1080i50

* ai53 - 50M 1080p24/p30

. 2152 — 50M 1080p25

* ailp— 100M 720p24/p30/p60
« ailg-100M 720p25/p50

* ail6 - 100M 1080i60

* ail5 - 100M 1080i50

« ail3—100M 1080p24/p30

* ail2 - 100M 1080p25

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1l</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>h264</codec>
<bitrate>100000000</bitrate>
<framerate>

4.3. Common presets 99



Vidispine REST APl Documentation, Release 4.2.2

<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<gopSize>0</gopSize>
<pixelFormat>yuv422p</pixelFormat>
<preset>intral(00</preset>
<profile>CBR</profile>
<setting>
<key>codecTagString</key>
<value>ail2</value>
</setting>
</video>
</TranscodePresetDocument>

4.3.3 ProRes

Set the codec element to prores. The preset element must also be set to one of the following values:
e PR422HQ — ProRes HQ
e PR422 — ProRes 422
e PR422LT — ProRes LT
* PR422Proxy — ProRes Proxy
e PR4444 —ProRes 4444

The ProRes encoder will use the field-order information that Vidispine can read from the input file. In the case that
Vidispine has the wrong information, you can override it by adding a sett ing key-value to the video element in
the TranscodePresetDocument. The key should be interlace_flag and value one of:

* progressive
e top_first

* bottom_first

Example

ProRes 422 LT:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>

100 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

<codec>prores</codec>

<bitrate>85000000</bitrate>

<preset>PR422LT</preset>

<framerate>
<numerator>l</numerator>
<denominator>25</denominator>

</framerate>

</video>
</TranscodePresetDocument>

With interlace_flagsettotop_first:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mov</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1l</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>prores</codec>
<bitrate>85000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>
</framerate>
<preset>PR422LT</preset>
<setting>
<key>interlace_flag</key>
<value>top_first</value>
</setting>
</video>
</TranscodePresetDocument>

4.3.4 XDCAM IMX-30/40/50

The preset element must be set to imx30, imx40 or imx50 depending on desired output. Also, a setting must be
added specifying codecTagString. Accepted values are:

* mx5p — IMX-50
e mx4p - IMX-40
* mx3p — IMX-30

NTSC

To get NTSC output, there are a few changes that need to be made.

4.3. Common presets 101



Vidispine REST APl Documentation, Release 4.2.2

Example

IMX-50:

e The framerate should have a numerator of 1001 and a denominator of 30000.
e The scaling element should have a height of 518.

* Exchange the last letter of the codedTagString from p to n (i.e. mx5p to mx5n)

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mxf_d10</format>
<audio>

<codec>pcm_s24le</codec>
<channel>0</channel>
<channel>1</channel>
<channel>2</channel>
<channel>3</channel>
<stream>4</stream>

</audio>
<video>

<scaling>
<width>720</width>
<height>608</height>
<top>-32</top>
</scaling>
<codec>mpeg2video</codec>
<bitrate>50000000</bitrate>
<framerate>
<numerator>1</numerator>
<denominator>25</denominator>
</framerate>
<displayWidth>
<numerator>720</numerator>
<denominator>1</denominator>
</displayWidth>
<displayHeight>
<numerator>576</numerator>
<denominator>1</denominator>
</displayHeight>
<displayXOffset>
<numerator>0</numerator>
<denominator>1</denominator>
</displayXOffset>
<displayYOffset>
<numerator>32</numerator>
<denominator>1</denominator>
</displayYOffset>
<containerSAR>
<horizontal>64</horizontal>
<vertical>45</vertical>
</containerSAR>
<gopSize>0</gopSize>
<pixelFormat>yuv422p</pixelFormat>
<preset>imx50</preset>
<setting>
<key>codecTagString</key>
<value>nx5p</value>

102

Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

</setting>

</video>
</TranscodePresetDocument>

4.3.5 XDCAM HD422

The format element must be set to mxf_ f fmpeqg. There are also some settings that must be added, see example
below. The codecTagString setting should be one of the following values:

xd54 — 720p24 50Mb/s CBR
xd55 —720p25 50Mb/s CBR
xd59 — 720p60 50Mb/s CBR
xd5a —720p50 50Mb/s CBR
xd5b — 1080160 50Mb/s CBR
xd5c — 1080150 50Mb/s CBR
xd5d — 1080p24 50Mb/s CBR
xd5e — 1080p25 50Mb/s CBR
xd5f — 1080p30 50Mb/s CBR

NTSC

To get NTSC output, set the framerate to have a numerator of 1001 and a denominator of 30000, and use

the appropriate codecTagString from the list above.

Example

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mxf_ffmpeg</format>
<audio>

<codec>pcm_s24le</codec>
<channel>0</channel>
<channel>1</channel>
<channel>2</channel>
<channel>3</channel>
<stream>1</stream>
<stream>1</stream>
<stream>1</stream>
<stream>1</stream>

</audio>
<video>

<scaling>
<width>1920</width>
<height>1080</height>
</scaling>
<codec>mpeg2video</codec>
<bitrate>50000000</bitrate>
<framerate>
<numerator>1l</numerator>
<denominator>25</denominator>

4.3.

Common presets

103



Vidispine REST APl Documentation, Release 4.2.2

</framerate>
<pixelFormat>yuv422p</pixelFormat>
<setting>
<key>flags</key>
<value>+ildct+ilme</value>
</setting>
<setting>
<key>top</key>
<value>l</value>
</setting>
<setting>
<key>dc</key>
<value>10</value>
</setting>
<setting>
<key>gmin</key>
<value>l</value>
</setting>
<setting>
<key>1lmin</key>
<value>1+QP2LAMBDA</value>
</setting>
<setting>
<key>rc_max_vbv_use</key>
<value>1l</value>
</setting>
<setting>
<key>rc_min_vbv_use</key>
<value>l</value>
</setting>
<setting>
<key>minrate</key>
<value>50000k</value>
</setting>
<setting>
<key>maxrate</key>
<value>50000k</value>
</setting>
<setting>
<key>bufsize</key>
<value>36408333</value>
</setting>
<setting>
<key>bf</key>
<value>2</value>
</setting>
<setting>
<key>codecTagString</key>
<value>xd5c</value>
</setting>
</video>
</TranscodePresetDocument>

4.3.6 DV

For DVCAM, DVCPRO and DVCPRO50, codec should be set to dvvideo, for DVCPRO HD, it should be
dv_100. To get 16x9 aspect ratio, targetDAR must be set (see example below). The value of pixelFormat

104 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

determines whether the output will be DV, DVCPRO or DVCPROS50.

Pixel format | Output
yuv420p DVCAM

yuvédllp DVCPRO
yuv422p DVCPROS50
NTSC

To get NTSC output the following changes should be made.
e The framerate should have a numerator of 1001 and a denominator of 30000.
e The scaling should have a height of 480.

* codecTagString should have a value of dvpn

Example

16x9 DVCPRO:

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>avi</format>
<audio>
<codec>pcm_sl6le</codec>
<framerate>
<numerator>1l</numerator>
<denominator>48000</denominator>
</framerate>
<channel>0</channel>
<channel>1</channel>
<stream>2</stream>
</audio>
<video>
<scaling>
<width>720</width>
<height>576</height>
<targetDAR>
<horizontal>16</horizontal>
<vertical>9</vertical>
</targetDAR>
</scaling>
<codec>dvvideo</codec>
<bitrate>25000000</bitrate>
<framerate>
<numerator>1</numerator>
<denominator>25</denominator>
</framerate>
<gopSize>0</gopSize>
<pixelFormat>yuv4llp</pixelFormat>
<profile>CBR</profile>
<setting>
<key>codecTagString</key>
<value>dvpp</value>
</setting>
<setting>
<key>dt smode</key>
<value>pts</value>

4.3. Common presets 105



Vidispine REST APl Documentation, Release 4.2.2

</setting>
</video>
</TranscodePresetDocument>

4.3.7 DNxHD

The codec should be set to dnxhd.

4.3.8 RED

New in version 4.1.

Vidispine support RED as an input format so there is no special shape-tag settings that needs to be made. However,
there are a few limitations and things to keep in mind.

Local file access

The transcoder needs to be able to read the RED file locally. Transcoder and Middleware needs to be running at the
same machine.

Choosing an appropriate quality

New in version 4.2.

Demuxing of RED material is a very computational demanding task. Normal RED footage has a resolution of 4K or
5K. Decoding such a frame in full resolution and quality is sometimes a bit overkill. That is, when creating a lowres
file in 640x360 resolution you can save a lot of time by decoding the RED footage in a lower resolution.

You can specify what decoding/demuxing quality the transcoder should use by setting the demuxerSetting ele-
ment in your shape-tag:

<TranscodePresetDocument>
<format>mp4</format>
<audio>

</audio>

<video>

</video>

<demuxerSetting>
<key>r3d_demuxer_quality</key>
<value>full_premium</value>

</demuxerSetting>
</TranscodePresetDocument>

Valid values for r3d_demuxer_quality is:
e full_premium - Full resolution and the best quality
* half premium - Half of the width and height of the original resolution and the best quality
* half_good - Half of the width and height of the original resolution with good quality
* quarter_good - Quarter of the width and height of the original resolution with good quality

* eight_good - An eight of the width and height of the original resolution with good quality

106 Chapter 4. Shapes, Components and Transcoding



Vidispine REST APl Documentation, Release 4.2.2

* sixteenth_good - A sixteenth of the width and height of the original resolution with good quality

Multi-file RED clips
In case of multi-file RED clip the naming of the clips will be crucial. They should already be named (which they are
as default):

<filename><index>.R3D

To preserve the filename of a RED file you can add a filename script to the storage where the RED files will be
imported. For example:

PUT /API/storage/<storage-id>/metadata/filenameScript HTTP/1.1
Content-Type:text/plain

if (context.getExtension() != null && (context.getExtension() == "R3D" || context.getExtension/ ()
"VX-" + context.getOriginalFilename () ;

else
context.getFileId() + "." + context.getExtension();

Then you need to import the clips into an placeholder, this way there will only be one transcoded file instead of X (X
being the number of clips). For example:

POST /API/import/placeholder?container=0&video=2
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
<field>
<name>title</name>
<value>My placeholder for RED files</value>
</field>
</timespan>
</MetadataDocument>

POST /API/import/placeholder/<placeholder-id>/video?uri=file:/REDTEST_001.R3D&tag=mp4
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INEF" end="+INF">
</timespan>

</MetadataDocument>

POST /API/import/placeholder/<placeholder-id>/video?uri=file:/REDTEST_002.R3D&tag=mp4
Content-Type: application/xml

MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan start="-INF" end="+INF">
</timespan>

</MetadataDocument>

4.3. Common presets 107



Vidispine REST APl Documentation, Release 4.2.2

108 Chapter 4. Shapes, Components and Transcoding



CHAPTER
FIVE

STORAGES AND FILES

5.1 Storages

Storages are where Vidispine will store any files that are ingested/created in the system. All files on a storage location
will get an entry in the Vidispine database, containing state, file size, hash etc. This is to keep track of any file changes.

For information about files in storage, see Files.

5.1.1 Storages

Storage types
A storage must be designated a type, based on what type of operations are to be performed on the contained files.
Operations in this context are transcode, move, delete, and destination (that is, placing new files here).

LOCAL A Vidispine specific storage, suitable for all operations. Note that LOCAL doesn’t necessarily imply that
the storage is physically local. It should however be a dedicated Vidispine storage. That is, files on such storages
should not be written to/deleted by any external application.

SHARED A storage shared with another application, Vidispine will not create new files, nor perform any write
operations here.

REMOTE A storage on a remote computer, files should be copied to a local storage before used.
EXTERNAL A storage placeholder.

ARCHIVE A storage meant for archiving, needs a plugin bean or a JavaScript, described in more detail at Archive
Integration.

EXPORT Files are not monitored, but copy operations to here will create a file entry in the database.

Storage states

Storages will have one of the following states:

NONE Not used.

READY Operating normally.

OFFLINE No available storage method could be reached.
FAILED Currently not used in Vidispine.

DISABLED Currently not used in Vidispine.
EVACUATING Storage is being evacuated.

109



Vidispine REST APl Documentation, Release 4.2.2

EVACUATED Evacuating process finished.

For more information about storage evacuation, see section on Evacuating storages.

Storage groups

Storages can be placed in named groups, called storage groups. These storage groups can then be used in Storage
rules and Quota rules.

Storage capacity

When a storage is created a capacity can be specified. This is the total number of bytes that is freely available on the
storage. The free capacity is calculated as total capacity - sum(file sizes in database list).
Note that this means that the size of MISSING and LOST files are included in the used capacity. If you do not expect
a file with these states to return, it is best to delete the file entity using the API.

Auto-detecting the storage capacity

By setting the element aut oDetect in the StorageDocument you can make Vidispine read the capacity from the file
system. This only works if the storage has a storage method that points to the local file system, thatis, a file://
URL

Warning: Do not enable auto-detection for multiple storages located on the same device, as each storage will
then have the capacity of the device. This means that storages may appear to have free space in Vidispine, when
there is actually no space left on the device.

Storage cleanup

If you have used storage rules to control the placement of files on storages then you may have noticed that files have
been copied to the storages selected by the rules, but that files on the source storages have not been removed.

This is by design. Vidispine prefers to keep multiple copies of a file, and only remove the files when a storage is about
to become full. The storage high and low watermarks control when files should start to be removed, and when enough
files have been removed and storage cleanup should stop.

For example, for a 1 TB storage with a high watermark at 80% and a low watermark at 40%, Vidispine will keep
adding files to the storage until the usage exceeds 800 GB. Once that happens cleanup would occur. Files that are
deletable, that is, that have a copy on another storage and that is not required to exist according to the storage rules,
will be deleted. Cleanup will stop once the usage has reached 400 GB or when there are no more deletable files.

If this behavior is not desirable, then there are two options.

1. Update the storage rules to specify where files should not exist, using the not element. For example, using
<not><any/></not>.

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>1</storageCount>
<storage>VX-122</storage>
<not><any/></not>

</StorageRuleDocument>

2. Set the high watermark on the storage to 0%. Updating the storage rules is preferred as storage cleanup will be
triggered continuously if the high watermark is set at a low level.

110 Chapter 5. Storages and Files



Vidispine REST APl Documentation, Release 4.2.2

Evacuating storages

If you would like to delete a storage, but you still have files there which are connected to items, you can first trigger an
evacuation of the storage. This will cause Vidispine to attempt to delete redundant files, or move files to other storages.
Once the evacuation is complete, the storage will get the state EVACUATED.

5.1.2 Storage methods
Methods are the way Vidispine talks to the storage. Every method has a base URL. See Storage method URIs for the
list of supported schemes.

Retrieve a storage to check its status. The storage state shows if the storage is accessible to Vidispine. If a storage
is not accessible, then its state will be OFFLINE. Check the failureMessage in the storage methods to find out
why. The failure message will be the error from when the last attempt to connect to the storage was made, and will be
available even when the storage comes back online again. Compare last Success to lastFailure to determine
if the error message is current or not.

If multiple methods are defined for one storage, it is important, in order to avoid inconsistencies, that they all point
to the same physical location. E.g. a storage might have one file system method, and one HTTP method. The HTTP
URL must point to the same physical location as the file system method.

Storage method examples

Here are some examples of valid storage methods:
e file:///mnt/vidistorage/
e ftp://vidispine:pA5sw0rd!?@10.85.0.10/storage/

* azure://:%2ZmFuOD10MGgOMmJI5ZnZuczc5YmhndjkrZThodnV5Ymhagb21lwbW91lcmN4c2Rmc2Q0NThmd jQ0Mzc

Method types

Methods can also be of different type. By default, the type is empty. Only those methods (with empty types) are
used by Vidispine when doing file operations, the other methods are ignored, but can be returned, for example when
requesting URLSs in search results.

New in version 4.1: Credentials are encrypted. This means that passwords cannot be viewed through the API/server
logs.

Auto method types

One exception is method type AUTO, or any method type with prefix AUTO~-. When a file URL is requested, with such
method type, the a no-auth URL will be created (with the method URL as base).

If there is no AUTO method defined, but a file URL is requested with method type AUTO, an implicit one will be used
automatically.

GET /item/VX-2406?content=uri&methodType=AUTO
Accept: application/xml

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" 1d="VX-2406">
<files>
<uri>http://vs.example.com:8089/APInocauth/storage/VX-1/file/VX-6537/0.7354486788234469/VX-6537 .m
<uri>http://vs.example.com:8089/APInoauth/storage/VX-1/£file/VX-6536/0.7638025887084131/VX-6536.d

5.1. Storages 111



Vidispine REST APl Documentation, Release 4.2.2

</files>
</ItemDocument>

The URL returned is only valid for the duration of fileTempKeyDuration minutes. The expiration timer is
reset whenever the URL is used in a new operation (e.g. HEAD (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec9.html#sec9.4) or GET (http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3)).

Method metadata

In addition to select method types, method metadata can be given as instructions for the URI returned. Two metadata
values are defined:

format Specifies if any special format of the URI should be returned. By default, the normal URI is returned. Two
values are defined:

SIGNED Returns a ht tp URI that points contains a signed URI directly to Azure or S3 storage. If a signed
URI cannot be generated from the underlying (default) URI, no URI is returned.

SIGNED-AUTO New in version 4.2.9.
As above, but if no URI can be generated, an AUTO URI (see above) is returned.

expiration Sets the expiration time of the signed URI, in minutes. If not specified, the expiration time is 60 minutes,
unless azureSasValidTime is set.

GET /item/VX-206?content=uri&methodMetadata=format=SIGNED-AUTO
Accept: application/xml

<ItemDocument xmlns="http://xml.vidispine.com/schema/vidispine" id="VX-206">
<files>
<uri>https://vstest.s3.amazonaws.com/VX-362.mp4?Expires=1439545041&amp; AWSAccessKeyld=AKIAJCCXQR
<uri>http://vs.example.com:8089/APInoauth/storage/VX-1/£file/VX-336/0.7638025117084131/VX-336.dv<,
</files>
</ItemDocument>

Parent directory management

For local file systems (method is using a £ile:// URI), Vidispine will by default remove empty parent directories
when deleting the last file in the directory.

New in version 4.2.5: This can be controlled, either on system level or on storage level. If the storage metadata
keepEmptyDirectories is set to true, empty directories are preserved in that storage. Likewise, if the configu-
ration property keepEmptyDirectories is set to true, empty directories are preserved for all storages. Storage
configuration overrules system configuration.

5.1.3 Files

When are files scanned?

In order to discover changes made to files, or if any files have been removed/added, Vidispine will scan the storages
periodically. It is possible to disable the scanning by not having any methods with browse=t rue on the storage.
The scan interval is also configurable on a per storage basis by setting the scanInterval storage metadata. The
value should be in seconds. Setting this to a higher value will lower the I/O load of the device, but any file changes will
take longer to be discovered. This also means that file notifications for file changes or file creation will be triggered
later for changes occurring outside of Vidispine’s control.

112 Chapter 5. Storages and Files


http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Vidispine REST APl Documentation, Release 4.2.2

You can force a rescan of a storage by calling POST /storage/ (storage—id) /rescan. This will trigger an
immediate rescan of a storage if the supervisor is idle. If a supervisor is already busy processing the files then you
may notice that the rescan happens some time later.

Avoiding frequent scan of S3 storages

New in version 4.4.

Scanning a S3 storage can be expensive both in terms of time and money. To make it
cheaper to access a S3 bucket, you can configure Vidispine to poll Amazon SQS for S3 events
(http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html).

See S3 Event Notifications for more information.

File States

Files can be in one of the following states:

NONE Just created, not used.

OPEN Discovered or created, not yet marked as finished.

CLOSED File does no longer grow.

UNKNOWN The current state is not known.

MISSING File is missing from the file system/storage.

LOST File has been missing for a longer period. Candidate for restoration from archive.
TO_APPEAR File will appear on file system/storage, transfer subsystem or transcoder will create it.
TO_BE_DELETED The file is no longer in use, and will be deleted at the next clean-up sweep.
BEING_READ File is in use by transfer subsystem or transcoder.

ARCHIVED File is archived.

AWAITING_SYNC File will be synchronized by multi-site agent.

Vidispine will mark a file as MISSING when it is first detected that the file no longer exists on the storage. No action
is taken for files that are missing. If the file does not appear within the time specified by 1ostLimit, then the file
will be marked as LOST. Lost files will be restored from other copies if such exist.

5.1.4 ltems and storages
By default, when creating a new file, Vidispine will choose the LOCAL storage with the highest free capacity. This
can be changed in a few different ways:

 Setting the defaultIngestStorage configuration property.

* Supplying the storageld parameter on the import request.

 Using Storage rules.

5.1. Storages 113


http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Vidispine REST APl Documentation, Release 4.2.2

5.1.5 File hashing

Vidispine will calculate a hash for all files in a storage. This is done by a background process, running continuously.
Files are hashed one by one for performance reasons, so if a large number of files are added to the system in a short
time span it might take some time for all hashes to be calculated. The default hashing algorithm is SHA-1. This can
be changed by setting the configuration property £ileHashAlgorithm. See below for a list of supported values.

Additional algorithms

Vidispine can be configured to calculate hashes using additional algorithms by setting the additionalHash meta-
data field on the storage. It should contain a comma separated list (no spaces) of algorithms. The supported algorithms
are:

* MD2

* MD5
SHA-1
SHA-256
SHA-384
* SHA-512

5.1.6 Throttling storage 1/0

Vidispine will retrieve information about files on a storage at the configured scan intervals. If you find that the I/O
on your local disk drives is high, even when no transfers or transcodes are being performed, then you can try rate
limiting the stat calls performed by Vidispine. Do this by setting stat sPerSecond or the configuration property
statsPerSecond to a suitable limit. During the file system scan, Vidispine will typically perform one stat per file.

An easy way to check if rate limiting the stat calls will have any effect is
to disable the storage supervisors in  Vidispine. This can be done wusing PUT
/vidispine-service/service/StorageSupervisorServlet/disable. Remember to enable
the service afterwards or you will find that Vidispine no longer detects new files on the storages, among other things.

It could also be that it’s the file hashing service that is the cause of the I/O. You should be able to tell which service
is behind it by monitoring your disk devices. If there’s a high read activity/a large amount of data read from a device
then it could be the file hashing that’s the cause. If the number of read operations per seconds is high then it’s more
likely the storage supervisor.

Tip: Use tools such as htop, iotop, dstat and 1iostat to monitor your systems and devices.

5.1.7 Throttling transfer to and from a storage

New in version 4.0.

It is possible to specify a bandwidth on a storage or a specific storage method. This causes any file transfers involving
the specified storage or storage method to be throttled. If multiple transfers take place concurrently, the total bandwidth
will be allocated between the transfers. If a bandwidth is set on both the storage and its storage methods, the lowest
applicable bandwidth will be used.

To set a bandwidth you can set the bandwidth element in the StorageMethodDocument when creating or updating
a storage or storage method. The bandwidth is set in bytes per second.

114 Chapter 5. Storages and Files



Vidispine REST APl Documentation, Release 4.2.2

Example

Updating a storage to set a bandwidth of 50,000,000 bytes per second.

PUT /storage/VX-2
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<capacity>1000000000</capacity>
<bandwidth>50000000</bandwidth>

</StorageDocument>

Example

Updating a storage method to set a bandwidth of 20,000,000 bytes per second.

PUT /storage/VX-2/method?uri=http://10.5.1.2/shared/&bandwidth=20000000

5.1.8 Temporary storages for transcoder output

New in version 4.2.3.

The Vidispine transcoder requires that the destination (output) file can be partially updated. This is in order to be able
to write header files after the essence has been written.

In previous versions, this is solved by the application server storing the intermediate result as a temporary file on the
local file system (/tmp). This requires a lot of space on the application server.

With version 4.2.3, another strategy is available. Instead of storing the result as one file on the application server,
several small files are stored directly on the destination file system as “segments”. After the transcode has finished,
the segments are merged. On S3 storage, this merging can be done with S3 object(s)-to-object copy.

Control of the segment file strategy is via the useSegmentF1i les configuration property.

5.1.9 Storage method URIs

The following URI schemes are defined.

file

Syntax file:///{path}
Example file:///mnt/storage/, file:///C:/mystorage/

Note The URI file://mnt/storage/ is not valid! (But file:/mnt/storage/ is.)

ftp

Syntax ftp://{user}:{password}@{host}/{path}

Example ftp://johndoe:secr3tlexample.com/mystorage/

5.1. Storages 115



Vidispine REST APl Documentation, Release 4.2.2

New in version 4.1.2: Add query parameter passive=false to force active mode. To set the client side ports
used in active mode, set the configuration property ftpActiveModePortRange, the value should be a range, e.g.
42100-42200.

To set the client IP used in active mode, set the configuration property ftpActiveModeIp.

sftp

Syntax sftp://{user}:{password}@{host}/{path}

Example sftp://johndoe:secr3t@example.com/mystorage/

http

Syntax http://{user}:{password}@{host}/{path}
Example http://johndoe:secr3t@example.com/mystorage/
Note Requires WebDAV support in host.

https

Syntax https://{user}:{password}@{host}/{path}
Example https://johndoe:secr3tl@example.com/mystorage/
Note Requires WebDAV support in host.

omms

Syntax omms://{userId}:{userKey}@{hostList}/{clusterId}/{vaultId}/
Example omms://c2f6a2f4-6927-11el-cc94-ab94bd11183f:some%20secret@10.0.0.3,10.0.0.4/425
Note Object Matrix Matrix Store.

s3

Syntax s3://{accessKey}:{secretKey}@{bucket}/{path}

Example s3://KDASODSALSDI8U:RxZY1u23NDSIN293002Wd1Nyglmystore/storagel/
The following query parameters are supported:
endpoint The endpoint that the S3 requests will be sent to.

See Regions and Endpoints (http://docs.aws.amazon.com/general/latest/gr/rande.html) in the Amazon documen-
tation for more information.

New in version 4.4.
region The region that will be used in the S3 requests.

See Regions and Endpoints (http://docs.aws.amazon.com/general/latest/gr/rande.html) in the Amazon documen-
tation for more information.

New in version 4.4.

116 Chapter 5. Storages and Files


http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Vidispine REST APl Documentation, Release 4.2.2

Note: For Version 4 Signature only regions (http://docs.aws.amazon.com/AmazonS3/latest/dev/Using AW SSDK.html#specify-
signature-version) (Beijing and Frankfurt) to work, the endpoint or region parameter must be set. Example:

* s3://frankfurt-bucket/?endpoint=s3.eu—-central-1.amazonaws.com

e s3://frankfurt-bucket/?region=eu-central-1

Storage method metadata keys can be used control the interaction with the storage.

storageClass The default Amazon S3 storage class that will be used for new files created on an Amazon S3
storage. Can be either standard or reduced

Default standard
New in version 4.0.3.

sseAlgorithm The encryption used to encrypt data on the server side. See Server-Side Encryption
(http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html). By default no encryption will
be performed.

This sets the x—amz-server—side-encryption header on PUT Object S3 requests.
Example AES256

New in version 4.4.1.

azure

Syntax azure://:{accessKey}@{accountName}/{containerName}
Example azure://:KLKau23dEEO2Wd1lLiO@companyname/containerl/
New in version 4.0.1.
See also:

See here for some notes on how to write URIs.

5.2 Automatic import

A storage can be configured to automatically import new files/image sequences that are detected. Auto-import rules
define what transcodes that should be performed as well as what metadata to be used if none can be found. Metadata
can automatically be found if it shares the same filename and has the extension . xm1, for example video.avi and
video.xml.

Auto-import rules can also use Import settings to set up access control lists by setting the optional settingsId
element.

5.2.1 Importing with a metadata file of an external format

Vidispine also supports auto imports with a metadata XML file that is of a different format than the native Vidispine
MetadataDocument. This is achieved by associating a Metadata projections (XSLT transformation) with the auto
import rule. First, create the projection, then set the auto import rule:

5.2. Automatic import 117


http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Vidispine REST APl Documentation, Release 4.2.2

PUT /storage/VX-2/auto-import
Content-Type: application/xml

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>myflvtag</tag>
<projection>myProjection</projection>

</AutoImportRuleDocument>

Where the pro jection element contains a Projection id.

Any auto imports from this storage will then first transform the supplied XML file using the specified projection.

5.2.2 Title as metadata

The AutolmportRuleDocument contains a field £ileNameAsTitle. Setting this property to t rue means that the
“title” fields of all single files imported form this storage will be set to their file names.

5.2.3 Applying file name filters to auto import rules

There are two kinds of filename filters that can be applied to auto import rules:

Exclusion filters Used to exclude files from being auto imported. This can be useful when the OS creates files
automatically, e.g. Thumbs . db on Windows or .DS_Store files on Mac OS. Note that the expression must
match the entire path, not only a part of the path.

Shape tag filters These can be used to transcode the imported file using a specific shape tag when a file name follows
a certain pattern. You might want files ending in . t 1 £ £ to be transcoded using the tag 1 owimage for example.

The filters are specified in the XML document you use to create/update the auto import rule.

Example

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<metadata>
<timespan start="-INEF" end="+INEF">
<field>
<name>title</name>
<value>This is an auto-imported item.</value>
</field>
</timespan>
</metadata>
<tag>generictag</tag>
<excludeFilter>
<pattern>.*\.DS_Store</pattern>
<excludeFilter>
<shapeTagFilter>
<pattern>.x\.tiff</pattern>
<tag>lowimage</tag>
</shapeTagFilter>
<shapeTagFilter>
<pattern>.x\.mxf</pattern>
<tag>lowvideo</tag>
</shapeTagFilter>
</AutoImportRuleDocument>

118 Chapter 5. Storages and Files



Vidispine REST APl Documentation, Release 4.2.2

This rule will exclude any file ending with .DS_Store. Any files ending with .tiff will be imported with the
shape tag 1owimage, and any files ending in .mxf will be imported with the shape tag 1owvideo. All files will be
imported with the shape tag generictag.

5.2.4 Auto import of image sequences

Image sequences can be auto detected and imported if their file names match the predefined regex in AutolmportRule-
Document. The elements in the document are:

fileSequence Defines the file name pattern, and it is mandatory.

sequenceMetadata Defines the metadata file name pattern.

idGroup The matching group in the regex should be used as the id of the file sequence.

numGroup The matching group in the regex that should represent the position of a file in a sequence.

timeout A sequence is considered as completed after a certain timeout (in seconds). The default timeout is 60
seconds.

Example:

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>mp4</tag>
<metadata>
<timespan end="+INEF" start="-INEF">
<field>
<name>title</name>
<value>auto-imported item.</value>
</field>
</timespan>
</metadata>
<sequenceDefinition>
<sequenceMetadata>
<regex> (.*) -metadata.xml</regex>
<idGroup>1</idGroup>
</sequenceMetadata>

<fileSequence>
<regex> (.*)—-([0-9]+) . (dpx|tga|png| jpg) </regex>
<idGroup>1</idGroup>
<numGroup>2</numGroup>
<timeout>10</timeout>
<!-- seconds—-—>

</fileSequence>

</sequenceDefinition>
</AutoImportRuleDocument>

Given a storage with the above import rule, with the files:

foo-metadata.xml
foo-001.dpx
foo-002.dpx
foo-002.dpx

Then these would be recognized as a sequence foo with foo-metadata.xml as the metadata.

5.2. Automatic import 119



Vidispine REST APl Documentation, Release 4.2.2

5.3 Storage rules

Storage rules are a way of controlling the availability of files. The rules describe where files of different types are
stored. Settings include a minimum number of storages, specific storages and priorities for how suited a storage is
for a particular type. A rule can be applied on a specific item, collection, library or shape tag. To further filter which
shapes that the rules applies to, a shape tag can be set. Files can be named using storage name rules.

New in version 4.1.1: A storage rule can also describe where files should not be stored, in which case files will be
eagerly removed. The default is otherwise to start removing files once the high watermark on a storage has been
reached. A rule can specify specific storages or storage groups, or that all other storages should be excluded by using
the “all” qualifier.

New in version 4.2.2: Storage rules on collections can now be inherited to items in sub-collections. See Inherited rule
example.

5.3.1 Resolving storage rules

If a minimum number of storages has been set and an insufficient amount of specific storages are given, priorities are
used to pick a suitable storage. The different priority criteria can be seen in the table below. The criteria type is given
together with an integer describing its priority, where a lower number means that it is more important than an entry
with a higher number.

Type Description
bandwidth | Prioritizes bandwidth.
capacity Prioritizes free available space.

Which rules apply?
Certain rules takes precedence over other rules. There are three things that factors into this decision process (ordered
according to their importance):

1. The precedence given to the rule.

2. The type of the entity the rule is applied to.

3. Whether the rule is set to a certain shape tag or not.

Below a table of available precedence values can be seen, ordered from most important to least important.

Name

HIGHEST

HIGH

MEDIUM (default value)
LOW

LOWEST

Below a table of the difference entity types can be seen, ordered from most important to least important.

Name

ITEM

COLLECTION

LIBRARY

GENERIC (the type used if set directly on a shape tag)

So for example a rule with the precedence value HIGHEST, that is applied to a certain shape tag on an item will always
take precedence over any other rule.

120 Chapter 5. Storages and Files



Vidispine REST APl Documentation, Release 4.2.2

How are storage rules applied?
Since a shape can have 0 or more shape tags, there can be some ambiguity between the rules. Below a basic algorithm,
that describes how the rules are applied, can be seen.

1. Start out with an empty set of storages, S.

2. Add all storages, given in the specific rules, to S.

3. If S is empty, add in storages specified in the generic rule.

4

. Set the minimum required storages, n, to equal the highest number specified in the specific rules and the generic
rule.

5. If the size of S is less than n:
(a) Retrieve the priorities from one of the specific rules.
(b) If no specific rule specified any priorities, use the generic rule.
(c) If the generic rule did not specify any priorities, use some system default priorities.

(d) Attempt to fill S using the priorities.

5.3.2 Examples
Simple rule example

Setting a simple rule on a item, dictating that the item’s original shape should exist on at least two storages, and one
of them must be storage VX-3

PUT /item/VX-28/storage-rule/original
Content-type: application/xml

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<storage>VX-3</storage>

</StorageRuleDocument>

Negative rule example

Setting a simple rule on a item, dictating that the item’s original shape should exist on at least two storages, and one
of them must be storage VX-3, and it must not exist on storage VX-2.

PUT /item/VX-28/storage-rule/original
Content-type: application/xml

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>2</storageCount>
<storage>VX-3</storage>
<not>
<storage>VX-2</storage>
</not>
</StorageRuleDocument>

5.3. Storage rules 121



Vidispine REST APl Documentation, Release 4.2.2

Inherited rule example

New in version 4.2.2.

Storage rules on collections by default only applies to the items in the collection and does not apply for items that exist
in any sub-collections.

To change so that a collection storage rule applies to all items in it and all items in any sub-collections, recursively,
use:

<StorageRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<storageCount>1</storageCount>
<inherited>true</inherited>
<storage>VX-1</storage>

</StorageRuleDocument>

5.4 Filenames

By default, Vidispine names new files according to site-id-number extension, all in one folder. This pattern can be
overridden. This section describes three very different ways.

5.4.1 Using a tree structure for files

Putting all files in the same directory of a storage can cause degraded performance on some file systems. By setting
the configuration property fileHierarchy, the naming convention is changed to site-id — numberl / number2
. extension. The number set in £ileHierarchy controls the size of number2. Example:

fileHierarchynotset,orQ | fileHierarchy =100 | fileHierarchy =1000
VX-7.mp4 VX-0/07.mp4 VX-0/007 .mp4
VX-47232 .mp4 VX-472/32 .mp4 VX-47/232 .mp4

Note that the splitting into subdirectories is currently only done in one level, so no VX-4/72/32 .mp4.

The configuration property may be changed at any time, but old files will not be renamed.

5.4.2 Storage name rules
A storage name rule dictates the filename that the file of a particular shape should have on a certain storage. Note that

these rules doesn’t make sure a file is actually located on a storage, it just says what filename a file should have if it is
located on that storage. Storage name rules are often used together with storage rules

5.4.3 Naming files on storage

The default naming convention of can be overridden on a per-storage basis by associating a JavaScript script to the
storage.

The script will be invoked whenever a file needs to be created on the storage.
Setting the script

The JavaScript is stored as metadata filenameScript to the storage. That is, the code is set using PUT
/storage/ (storage-id}/metadata/filenameScript.

122 Chapter 5. Storages and Files



Vidispine REST APl Documentation, Release 4.2.2

If using curl, use -——data-binary instead of —d to make sure all new-line characters are kept.

Input

In the execution context of the script, there is a variable named context, which has the following functions:

context .getShape ()
Returns a ShapeType (see Vidispine XSDs) object.

For example, to get the essence version, use context.getShape () .getEssenceVersion (). Can
return null.

context .getJobMetadata ()
Returns a java.util.Map<String, String>. Canbe null.

context.getItem()
Returns an ItemType, which is the same outputas GET /item/ (item—id) ?content=metadata, shape, access, exte
Canreturn null.

context .getStorage ()
Returns a StorageType.

context .getComponent ()
Returns a ComponentType. Can return null.

context .getExtension ()
Returns the suggested extension for the file. Can return null.

context.getFileld()
Returns the file id of the file to be created.

context .getTags ()
Returns a java.util.Collection<String> of the shape tags of the shape the file belongs to.

context.getOriginalFilename ()
Returns the original filename that was used when item was imported.

context .getChannel ()
Most of the time this will return null, except when you want to split audio channels to separate files.

New in version 4.1.

Output

The script should return (last value) the file name of the file.

Existing file names

If the suggested file name is already in use on the Storage, the script will be called again, up to 10 times. The new
invocations will run in the same context as the previous, so it is possible to store information, e.g. sequence numbers,
to not repeat the same file name.

Example

5.4. Filenames 123



Vidispine REST APl Documentation, Release 4.2.2

var 1 = "foobar-"+context.getStorage () .getId()+"/"+context.getFileId();
if (context.getExtension() != null)
1 += "."+context.getExtension();

5.5 URI’s, URLs, and Special Characters

5.5.1 File paths

There are a number of characters that have special uses in various file systems.

Characters not allowed in path segments (directory names, file names)

* U+0000 - U+001F (including TAB, CR, NL)
e« U+002F ( /)
e U+005C (\)

While technically possible to use in path segments on various file systems, it is not possible to use these characters in
Vidispine path names.

Characters not supported on certain platforms

U+007F ( DEL)
U+003F ( 2 )
U+002A ( + )
U+0024 ( $)
U+003A ( : )

¢ Paths that are MS-DOS device names ( LPT1, etc)
e U+D800 - U+10FFFF

These characters may or may not work, depending on operating system and Java version. It is strongly suggested that
they are not used.

5.5.2 APl calls

In calls to the Vidispine API, the following rules apply:
* Path segments are encoded using RFC3986 (http://www.ietf.org/rfc/rfc3986.txt).
— Non-ASCII characters are encoded in UTF-8, and do not have to be percent encoded.

— Percent encoding. Particularly space is encoded as %20 (not +, so Java’s URLEncoder is not the right
tool!)

* Non-ASCII characters are encoded in UTF-8, and do not have to be percent encoded
* Percent encoding. Particularly space is encoded as %20 (not +, so Java’s URLEncoder is not the right tool!)
* Query parameter values are encoded using RFC2396 (http://www.ietf.org/rfc/rfc2396.txt)

— Non-ASCII characters need to be percent encoded.

124 Chapter 5. Storages and Files


http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2396.txt

Vidispine REST APl Documentation, Release 4.2.2

— Space can be encoded as + (or %20).
* Non-ASCII characters need to be percent encoded
* Space can be encoded as + (or %20)

e URIs in XML documents need to be quoted according to XML, e.g. &amp;amp; for &amp;.

Note: As a consequence, path that are used as query parameters (e.g. the URL parameter in imports), need first to be
encoded as a URI, then encoded as a URL query parameter.

Example 1

Path: /tmp/my movie.dv
AsaURL file:/tmp/my%20movie.dv

As a URL parameter for import: http://localhost:8080/API/import ?URL=£11e$3A%2Ftmp%2Fmy%$2520movie.dv
(see below)

Note that the space has to be quoted twice. First to %20 in the URI, than the percent sign in %20 have to be quoted to
%2520.

Example 2

Path: /tmp/téte-a-téte.dv

AsaURI: file:/t%C3%AAte—-%C3%A0-t%C3%AAte.dv (UTF-8 is used for the special characters, then percent
encoded) (Optionally: file:/téte-a-téte.dv)

As a URL parameter for import: http://localhost:8080/API/import ?URL=t%25C3%25AAte-%25C3%25A0-t%25C3%

Code example

The following Java code, using Jersey’s UriBuilder, shows how to generate valid API calls:

String path = "/tmp/téte-a-téte.dv";

URI uri = new File (path) .toURI();

URI callUri = UriBuilder.fromUri ("http://localhost:8080/API/import") .queryParam("uri", "{uri}") .builc
Warning: In previous versions of Vidispine, the following call was accepted:

http://localhost:8080/API/import?URL=file:/tmp/my+movie.dv. However, this is not
valid, as the actual value of the parameter is then file:/tmp/my movie.dv , which is not a valid URL
(However, http://localhost:8080/API/import?URL=file:/tmp/my%$2520movie.dv is valid.)

See also:
e How to write VS URI’s

* The URLEncode and URLDecode Page (http://www.albionresearch.com/misc/urlencode.php)

5.5. URI’s, URLs, and Special Characters 125


http://www.albionresearch.com/misc/urlencode.php

Vidispine REST APl Documentation, Release 4.2.2

126 Chapter 5. Storages and Files



CHAPTER
SIX

JOBS AND TASK DEFINITIONS

6.1 Jobs

Jobs make up the long running tasks in Vidispine. They are created in response to requests that would otherwise not
be able to respond in time, such as import, export and transcode requests.

The actions performed by a job is determined by its type. Bound to the type are a number of steps, or tasks, defined by
the task definitions. The tasks form a graph, and typically execute in sequence, but it is also possible for tasks to start
in parallel. This happens for example when importing and transcoding a growing file. The transfer step will initiate
the transfer and then trigger the transcode step to start once enough data (the header) from the file has been transferred.

FINISHED/
FAILED

ABORT

PENDING ABORTED

The states of a job are illustrated above. See below for a full description of the states and of the job step states.

6.1.1 Creating jobs

Create jobs by making requests to other RESTful resources:

127



Vidispine REST APl Documentation, Release 4.2.2

Job type Relevant documentation

Import jobs Imports (Also Importing a file from a storage)
Export jobs Exports

Thumbnail jobs Thumbnail settings

Shape update/Essence version jobs | Shapes

File actions Files

Sequence rendering Item sequences

Item list job Listing items in batch

Shape analyze Shape analysis

6.1.2 Concurrency

The number of jobs that execute in parallel is determined by the concurrent Jobs configuration property.

Job pools

New in version 4.2.2.

Using job pools it is possible to limit the number of concurrent low priority jobs, to make sure that higher priority jobs
are able to start even if there are a large number of low priority jobs running. Job pools are configured using the job
pool configuration resource.

PUT /configuration/job-pool
Content-Type: application/xml

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
<pool>
<priorityThreshold>LOWEST</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

This configuration will allow at most 3 jobs with a priority of LOWEST to MEDIUM to execute at the same time. It
will also allow up to 5 concurrent HIGH/HIGHEST priority jobs, as the second pool will contain jobs with a priority
of LOWEST or higher (the priority threshold is the lower bound and pools have no upper priority bound.)

If there is no job pool with a priority threshold that matches low priority jobs then such jobs will not be started. For
example, to only let jobs with a priority of MEDIUM or higher to execute:

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

Note that the max concurrent job setting will only have an effect if it is lower then the size of all pools combined.

If no pools have been defined then <concurrentJobs> controls the number of concurrent jobs. This is the same
setting as the concurrentJobs configuration property. So by default the job pool configuration will look like:

128 Chapter 6. Jobs and Task Definitions



Vidispine REST APl Documentation, Release 4.2.2

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<concurrentJobs>3</concurrentJobs>
</JobPoolListDocument>

6.1.3 Job problems

Jobs will enter the state WAITING if a recoverable problem has occurred. Depending on the problem the system might
resolve itself or require manual assistance, for example if the system is out of storage space.

A system with no job problems will report:

GET /job/problem HTTP/1.1
Content-Type: application/xml

<JobProblemListDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

A system where the transcoder is unreachable for some reason may report:

GET /job/problem HTTP/1.1
Content-Type: application/xml

<JobProblemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<problem>
<id>31532534</id>
<type>TranscoderOffline</type>
<job>VX-172716</job>
</problem>
</JobProblemListDocument>

There can be multiple jobs waiting for a problem to be resolved, for example, in case of transcoder or storage problems.
For JavaScript problems there will however be one problem per job, as the problem condition is defined by a step
specific for each job.

6.1.4 Job tasks

The action performed by a task can be implemented either as a method in an EJB or as a JavaScript. Using JavaScript
is recommended for all new applications.

POST /task—-definition/ HTTP/1.1
Content-Type: application/xml

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>A custom JavaScript step</description>
<script><![CDATA[
// This script does nothing but fail the job
job.fatalFail ("Testing job failing");
]]></script>
<step>10000</step>
<dependency>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<jobType>PLACEHOLDER_IMPORT</jobType>
<critical>false</critical>

6.1. Jobs 129



Vidispine REST APl Documentation, Release 4.2.2

</task>
</TaskDefinitionListDocument>

Defining new tasks

See JavaScript tasks on how to create JavaScript tasks.

Task dependencies

The execution order is defined by the step numbers and dependencies of the steps. The dependency element
defines which steps a specific step depend on. There is also the parallelDependency element that defines the
dependencies that apply if the step is executing as a parallel step.

allPrevious =true | The step requires all previous step to finish, before it can start.
previous = true The step requires the previous step to finish, before it can start
step=N The step requires step number N to finish, before it can start

Visualizing tasks

In order to easily see the dependencies between steps for a particular job type, there is functionality to render the job
definition as a graph. In order to render the graph, the Graphviz (http://www.graphviz.org/) package is required.

6.2 JavaScript tasks

A JavaScript task is created by including the JavaScript in the task definition document. To evaluate the script Vidispine
uses Rhino (https://developer.mozilla.org/en-US/docs/Rhino). A number of global variables are defined for the script
to use, see Common JavaScript functions.

In addition for task definitions, there is the job object.

6.2.1 The job object

The job object contains methods for reading and writing metadata for the job that is executing, and also for some job
control.

job.getId()
Gets the id of the job that is executing.

New in version 4.2.2.

job. log (description)
Logs a message related to the current job step.

New in version 4.2.2.

job.getData (key)
Gets the data for the given key.

job.setData (key, value)
Sets the data for the given key.

job.fail (errorMessage)
Fails the current step, but the step will be retried (up to five times).

130 Chapter 6. Jobs and Task Definitions


http://www.graphviz.org/
https://developer.mozilla.org/en-US/docs/Rhino

Vidispine REST APl Documentation, Release 4.2.2

job.fatalFail (errorMessage)
Fails the current step and job.

6.2.2 Pausing job execution

New in version 4.0.

A JavaScript job step can pause the execution of the job by calling job.wait (). This will set the job in the
WAITING job state. To determine if the job execution can be resumed, the script is run again every minute with the
variable checkProblem set to true. If the job should keep waiting, then job.wait () should be called again.

job.wait (reason)
Sets the job in WAITING state.

Arguments

* reason (string) — An explanation of what the job is waiting for.

Example

if (checkProblem) {
if (/% condition is fulfilled =/ ...) {
return;
}
// Call job.wait () to indicate that the job should wait more
// See note above
job.wait ("condition still not fulfilled");

} else {
// run step as normal

if (/% condition is not fulfilled */ ...) {
job.wait ("waiting for condition");
return;

}

// continue job execution

6.2.3 Example: Update item metadata on import

Start by adding a new task to the import job with the script to execute.

Note: If using curl, use ——data-binary instead of —d to make sure all new-line characters are kept in the script.

POST /task-definition/
Content-Type: application/xml

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>Updating item metadata using a JavaScript task</description>
<script><![CDATA[

6.2. JavaScript tasks 131



Vidispine REST APl Documentation, Release 4.2.2

] ]></script>
<step>10000</step>
<dependency>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<jobType>PLACEHOLDER_IMPORT</jobType>
<critical>false</critical>
</task>
</TaskDefinitionListDocument>

// Retrieve the id of the item that is being imported
var itemId = Jjob.getData("itemId");
var shapeld = job.getData("originalShapeId");

// Retrieve the shape information

var shape = api.path("item/"+itemId+"/shape/"+shapeld) .get ();
var video = shape.videoComponent.length;

var audio = shape.audioComponent.length;

// Build a document with the metadata to set
var metadata = {
"timespan": [

{

"start": "-INF",
"end": "+INFEF",
"field": [
{
"name": "title",
"value": [
{
"value": "Item with "+4+video+" video and "+audio+" audio tracks"

// Update the item metadata
var result = api.path("item/"+itemId+"/metadata) .input (metadata) .put();
var metadata = result.item[0] .metadata;

6.2.4 Example: Update item metadata on import using XML

Scripts can also use ECMAScript for XML (E4X) to easily create and parse XML documents. Using E4X the above
script could be written as below. Note that the XML responses from Vidispine will automatically be parsed into E4X
XML objects instead of being returned as strings.

// Set the default XML namespace so that the Vidispine namespace does not have
// to be specified when retrieving properties or when building the metadata document
default xml namespace = "http://xml.vidispine.com/schema/vidispine";

// Retrieve the id of the item that is being imported
var itemId = job.getData ("itemId");
var shapelId = job.getData ("originalShapeId");

132 Chapter 6. Jobs and Task Definitions



Vidispine REST APl Documentation, Release 4.2.2

// Retrieve the shape information

var shape = api.path("item/"+itemId+"/shape/"+shapeId).dataType ("xml") .get ();
var video = shape.videoComponent.length();

var audio shape.audioComponent.length();

// Build a document with the metadata to set
var metadata = <MetadataDocument>
<timespan start="-INF" end="+INEF">
<field>
<name>title</name>
<value>Item with {video} video and {audio} audio tracks</value>
</field>
</timespan>
</MetadataDocument>

// Update the item metadata
var result = api.path("item/"+itemId+"/metadata") .input (metadata) .put();
var metadata = result.item[0].metadata;

6.3 Task groups

New in version 4.4.

Task groups can be used to control the transcoders that a specific job should use. It may be expanded in the future to
include not only jobs and transcoders, but also other types of tasks and resources.

* A task group identifies a set of jobs and the resources available to those jobs.
* Jobs are identified by a criteria on the group.

* A job can belong to multiple groups, but only a single group for each type of resource. If a job satisfies the
criteria on multiple groups, then the job belongs to the group with the highest priority.

* A transcoder can belong to any number of groups.

* A job will only use resources from the group(s) that it belongs to.

6.3.1 Creating a task group

Task groups are referred to by name. Each group should specify a job criteria and a number of transcoders, and a
priority if needed.

PUT /task-group/imports
Content-Type: application/xml

<TaskGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<job>
<type>PLACEHOLDER_IMPORT</type>
</job>
<transcoder>
<id>Vx-1</id>
</transcoder>
<transcoder>
<id>Vx-2</id>
</transcoder>

6.3. Task groups 133



Vidispine REST APl Documentation, Release 4.2.2

<priority>MEDIUM</priority>
</TaskGroupDocument>

6.3.2 Task group criteria

Task groups can have multiple criteria. A job must then satisfy them all to be considered being part of that group. The
selections in a criteria form a logical OR.

For example, to restrict jobs that are either imports or exports, and from the admin or bulk-import user, to transcoder
VX-1:

<TaskGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<job>
<type>PLACEHOLDER_IMPORT</type>
<type>EXPORT</type>
</ job>
<job>
<user>admin</user>
<user>bulk-import</user>
</job>
<transcoder>
<id>Vvx-1</id>
</transcoder>
</TaskGroupDocument>

This is evaluated as:

(type :PLACEHOLDER_IMPORT OR type:EXPORT)
AND
(user:admin OR user:bulk-import)

Job criteria

Jobs can be matched on:
* Priority - To include jobs with a certain priority.
* Type - To include jobs of a certain type.
* User - To include jobs created by a specific user.
* Group - To include jobs created by a user in a specific group.

 Data - To include jobs with certain data.

6.3.3 Task group priority

A job will use resources from the task group with the highest priority and a matching criteria. If two task groups have
the same priority then the groups are ordered by name in alphabetical order, and the first one is picked.

6.3.4 Job problems

If a job cannot run because the transcoders available to it are offline, then a transcoder offline problem will be created.
The problem will contain the name of the group and the job id(s).

134 Chapter 6. Jobs and Task Definitions



Vidispine REST APl Documentation, Release 4.2.2

This allows you to see which group/transcoder(s) a job is blocked on.

GET /job/problem

<JobProblemListDocument xmlns="http://xml.vidispine
<problem>
<id>35113</id>
<type>TranscoderOffline</type>
<job>VX-115770</job>
<data>
<key>taskGroup</key>
<value>imports</value>
</data>
</problem>
</JobProblemListDocument>

For example:

.com/schema/vidispine">

6.3. Task groups

135



Vidispine REST APl Documentation, Release 4.2.2

136 Chapter 6. Jobs and Task Definitions



CHAPTER
SEVEN

NOTIFICATIONS

Notifications are sent from the system when predefined events occur. An example of such an event could be a job that
finishes. Examples of when this could be useful are:

 Getting a notification when a job finishes.
* Making sure the metadata input for a certain field is correct.
Notifications involve a quadruple:
1. The resource or entity to be notified about.
2. The event that should trigger the notification.
3. The action that should be taken when the notification is triggered.

4. Filters that further specifies the behavior of the trigger.

7.1 Resources

A number of different entity types support notifications. Below is a short description of the different entity types and
what events can trigger a notification:

» Items — notifications can trigger on item delete/create, metadata changes, shape changes and access control
changes.

* Collections — can trigger on creation/deletion, metadata changes and content changes.
* Jobs — can trigger on job create, update, finish, fail and stop.

¢ Groups — group notifications can trigger on group create, delete and modify.
 Storages — can trigger on storage create/delete, and on new files.

* Files — can trigger on group create, delete and modify.

* Quota — quota notifications can trigger on quota create, delete, and quota exceeded warnings.

7.2 Actions

An action is what will be done when a notification is triggered. The action can either be to:
* Perform a HTTP request.
¢ Invoke an EJB method.
* Send a JMS message.

137



Vidispine REST APl Documentation, Release 4.2.2

» Execute a JavaScript.
The data included in the request or message will be multivalued key-value data identifying the event that has occurred.

An action can be sent either synchronous or asynchronous. In the case of a synchronous action the message will
be sent in the same thread as where the notification is triggered. And execution will only continue if the recipient
acknowledges and approves the message. In the asynchronous case the message will be sent in another thread and
execution will continue immediately.

For a full description of actions, refer to the API reference on Actions.

7.3 Triggers

A trigger is the event that will cause the notification to perform its action. Different triggers exist for different re-
sources. The trigger used determines what output that can be expected. Below an overview of available triggers can
be seen:

e Item triggers.
— Shapes
— Metadata
- ACLs
* Collection triggers
* Group triggers
* Job triggers
 Storage triggers
* File triggers
* Quota triggers

For a full description of triggers, refer to the API reference on Triggers.

7.4 Job filtering

7.4.1 Job types

Filter criteria can be added to job notifications in order to filter which type of jobs they trigger on.

7.4.2 Job metadata

Either by string comparison or regular expressions.

7.5 Filters

Filters can be used to specify the trigger further. For example in the case of metadata, the notification can be filtered
to only trigger for certain values.

138 Chapter 7. Notifications



CHAPTER
EIGHT

RESOURCES

Resources in Vidispine are components used for auxiliary storage or transformation. The two most commonly used
resource type are the thumbnail, which is used to store thumbnails, and t ranscoder, which points to instances
of the Vidispine transcoder.

8.1 Transcoders

When you import items the Vidispine transcoder will be used to detect the type of media that is being imported and,
of course, to transcode the media to any formats that you have requested.

The common operations performed by the transcoder are:
¢ Media shape deduction
* Transcoding
* Sequence rendering
* Partial file extraction
* XMP extraction and rewrite

The Vidispine transcoder has a REST API that Vidispine uses to perform the above operations. This API is not
described in this document, as it typically should not be accessed directly.

8.1.1 Adding a transcoder

Add a transcoder by creating a new t ranscoder resource. The resource document should contain information on
how to reach the transcoder and what storages the transcoder has direct access to.

POST /resource/
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<directAccess>
<filter>file:/srv/media/.*</filter>
</directAccess>
</transcoder>
</ResourceDocument>

139



Vidispine REST APl Documentation, Release 4.2.2

Vidispine checks the status of transcoders continuously in the background. As such, if the configuration is correct you
will see that the transcoder shows up as online in a few seconds.

GET /resource/VX-7

<?xml version="1.0"7?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>vx-7</id>
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<directAccess>
<filter>file:/srv/media/.x</filter>
</directAccess>
<state>ONLINE</state>
</transcoder>
</ResourceDocument>

The Vidispine installer will by default install and configure a transcoder in Vidispine for you, so this step is typically
not needed.

8.1.2 Using multiple transcoders

Depending on your license, you may be allowed to use more than one transcoder. To do so, simply add additional
transcoders as explained above. Vidispine will submit transcode jobs to the transcoder based on the current number of
jobs being processed by the transcoder.

Vidispine will use the transcoder with the least amount of work. If a transcoder goes offline then any transcode job
steps using that transcoder will fail and be retried using one of the online transcoders. If all transcoders are offline then
jobs will wait for one to become available.

Changed in version 4.4: The clusterName property must be set if multiple Vidispine installations are to share a
transcoder. Each installation must have a unique cluster name. This applies regardless if the installations have the
same site name or not.

Warning: Do not connect multiple Vidispine installations to the same set of transcoders unless each installation
has a distinct site name. If installations have the same site name then jobs from one installation may conflict with
jobs from another.

Changed in version 4.4: This no longer applies; see above notice.

8.1.3 How transcoders perform jobs
A transcoder will perform a job as soon as it is received, and will not schedule jobs for later execution. Vidispine,

that is, the user of the transcoder is responsible for scheduling which jobs a transcoder should execute and when they
should be executed.

8.1.4 The transcoder’s configuration file

The transcoder configuration file config.xml contains default settings for the transcoder and need typically not be
modified, as the settings can instead by configured in Vidispine.

140 Chapter 8. Resources



Vidispine REST APl Documentation, Release 4.2.2

Modify the transcoder file

On a Linux  system, copy the file /opt/vidispine/transcoder/config.xml to
/etc/transcoder-config.xml. Then edit /etc/transcoder-config.xml. The file in /etc
takes precedence over the file in /opt/vidispine.

Modify the transcoder resource

New in version 4.2.3.

On all operating systems, the transcoder configuration can be changed by adding configuration to the resource defini-
tion of the transcoder (Adding a transcoder).

Note that port of the transcoder cannot be changed in this fashion.

Modifying the transcoder configuration is this fashion takes precedence over the local configuration file and the global
transcoder configuration, see below.

Modify all transcoders

It is also possible to change the configuration of all transcoders, by setting the configuration property
transcoderDefaultConfiguration to the XML representation of the transcoder configuration.

Thumbnail settings

Note: The preferred way of changing the thumbnail and poster settings is by changing the appropriate values
in the TranscodePresetDocument in a shape tag. For example, by changing the thumbnailResolution and

thumbnailPeriod elements. The setting in shape tag have priority over the transcoder setting.

The thumbnailResolution element contains the default resolution of the thumbnails produced by the transcoder.

<a:thumbnailResolution>
<a:width>320</a:width>
<a:height>240</a:height>

</a:thumbnailResolution>

You can also change the thumbnailing frequency by changing thumbnailPeriod. For example, to thumbnail every
3 seconds:

<a:thumbnailPeriod>
<a:samples>3</a:samples>
<a:timeBase>
<a:numerator>1</a:numerator>
<a:denominator>1</a:denominator>
</a:timeBase>
</a:thumbnailPeriod>

If the transcoder does not use SceneChangeDetectionPlugin, the frequency defaults to once every 10 seconds.

StatsD settings

New in version 4.2.3.

To have the transcoder send metrics to a StatsD server you can either:

8.1. Transcoders 141



Vidispine REST APl Documentation, Release 4.2.2

 Enable StatsD using the API, see StatsD
» Update the transcoder configuration with the address and port of the StatsD server:

<a:statsd>
<a:destination>
<a:address>127.0.0.1</a:address>
<a:port>8125</a:port>
</a:destination>
<a:prefix>tl</a:prefix>
</a:statsd>

The prefix element configures the prefix to use for each metric. By default this is the t ranscoder.

Transcoder resources settings

Path to temporary storage

Since 4.2.5
Controls where temporary files are stored. Defaults to /tmp on UNIX-like systems, or $TEMP % on Windows.

<a:tempPath>/mnt/largetemparea<a:tempPath>

Number of decoding threads

Controls the number of decoding threads. Defaults to 4 for I-frame-only formats. The actual number of threads used
depends on codec. (New in 4.2.3.) Since version 4.2.3, this setting is used with more formats then before.

<a:decoderOfferThreads>8<a:decoderOfferThreads>

Number of encoding threads

Controls the number of encoding threads. Defaults to automatic setting. The actual number of threads used depends
on codec.

<a:encoderThreads>8<a:encoderThreads>

Image processing

To control the memory and disk usage used by the transcoder for image processing, use the <imagemagick>
element in the transcoder configuration. The most important settings are listed below, for a complete list, see
http://www.imagemagick.org/script/resources.php (under environment variables, used without the MAGICK__ prefix
in the transcoder configuration).

Maximum heap usage

<a:imagemagick>
<a:key>MEMORY_LIMIT</a:key>
<a:value>1GB</a:value>

</a:imagemagick>

142 Chapter 8. Resources


http://www.imagemagick.org/script/resources.php

Vidispine REST APl Documentation, Release 4.2.2

Temporary work area

<a:imagemagick>
<a:key>TEMPORARY_PATH</a:key>
<a:value>/var/tmp</a:value>

</a:imagemagick>

(New in 4.2.5.) The default value is the value set by the general transcoder temporary path, see above. It is recom-
mended that the tempPath setting is used, rather than the imagemagick one.

8.1.5 Operations overview

Zeroconf transcoders

The following is done to remove the need to configure the transcoders directly:

* Vidispine pushes its own license to the transcoder, so that each transcoder does not need a license file of their
own.

* The transcoder returns the IP address from where the license was pushed, that is, the IP address of the application
server, removing the need for explicitly configuring the reverse address, that is, where the transcoder can reach
Vidispine, in most cases.

* In addition, Vidispine generates temporary pre-authorized URIs that are used by the transcoder. This removes
the need for entering any application server information in the transcoder configuration file.

Reverse address and NAT

The reverse address does not work if there is NAT or other port forwarding mechanisms between the application server
and the transcoder. If so, the address to VS-EA can be overridden in the definition for the transcoder by setting the
<reverseAddress> element.

<?xml version="1.0"7?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<url>http://transcoder.example.com:8888/</url>
<reverseAddress>vs.example.com</reverseAddress>
</transcoder>
</ResourceDocument>

For GlassFish, a new HTTP listener (noauth-1istener, default port is the standard API port + 9) is installed
on GlassFish for communication from the transcoder to GlassFish. The rules for how the address to GlassFish is
determined are as follows:

1. If the configuration property apiNoauthUri is set, it is used for all transcoders.

2. If the configuration property apiNoauthPort is set, it is used for together with the detected or manually set
reverse address.

3. If the port for noauth-1istener can be determined (GlassFish only), it is used with the reverse address.
4. If the port for http—-1listener—1 can be determined (GlassFish only), it is used with the reverse address.

For JBoss, it is currently required that at least apiNoauthPort is set.

Transcoder’s access to media

By default, the transcoder accesses non-file-schema media through the application server. This has several advantages:

8.1. Transcoders 143



Vidispine REST APl Documentation, Release 4.2.2

* The same user is used for all file access.
* Possibility for support for extended file attributes and permissions.
* Support for other file systems (URI schemes).
Streaming the media puts some extra load on the application server. Some tuning might be necessary.

The transcoder resource in Vidispine can be set up to access files directly. By adding a directAccess element to
the transcoder resource, Vidispine will let the transcoder access the media directly. If no directAccess elements
are present, an implicit

<directAccess>
<filter>file:.x</filter>
</directAccess>

is added. In order to tell Vidispine that all files should go via the application server, add an

<directAccess>
<filter>NO_MATCH</filter> </-—- dummy regular expression that does not match anything —->
</directAccess>

Growing files

For all file systems that supports read-while-write, and for container formats that are built for streaming (e.g. MXF),
growing file is supported when streamed through the application server. If growing files is required to local files with
the file scheme, a directAccess/NO_MATCH element as per above must be added to the resource configuration.

8.2 Transcoder discovery

New in version 4.4.

Vidispine can automatically discover transcoders using either HTTP or DNS. This makes it possible to use Consul
(http://consul.io/), Amazon Route 53 (http://aws.amazon.com/route53/) or any DNS or HTTP server to track the avail-
able transcoders, with custom health checks and rules to determine which transcoders should be used by Vidispine for
example.

You could also configure Vidispine instances to read transcoders from another instance, as an easy way to manage a
set of transcoders.

8.2.1 Adding a transcoder directory

To have Vidispine discover transcoders, add a transcoder resource to Vidispine with the type set to DIRECTORY.

POST /resource/
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<type>DIRECTORY</type>
<url>http://service-user:oeHie2Ye@vsl.example.com:8080/API/resource/transcoder</url>
</transcoder>
</ResourceDocument>

Once the transcoders have been retrieved, they will show up as nested transcoders under the transcoder resource.

144 Chapter 8. Resources


http://consul.io/
http://aws.amazon.com/route53/

Vidispine REST APl Documentation, Release 4.2.2

GET /resource/VX-24

<?xml version="1.0"7?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vx-24</id>
<transcoder>
<type>DIRECTORY</type>
<url>http://service-user:oeHie2Ye@vsl.example.com:8080/API/resource/transcoder</url>
<state>ONLINE</state>
<transcoder>
<url>http://tl.transcoder.example.com:8888/</url>
<version>4.4</version>
<reverseAddressDetected>172.17.42.1</reverseAddressDetected>
<state>ONLINE</state>
</transcoder>
<transcoder>
<url>http://t2.transcoder.example.com:8888/</url>
<state>OFFLINE</state>
</transcoder>
</transcoder>
</ResourceDocument>

Note: If the HTTP/DNS server is offline then the known set of transcoders will be kept and used until the server
comes online again and the set of transcoders is updated.

8.2.2 Supported URIs

http:
Syntax http://[{user}:{password}@] {host}/{path}
Response application/xml - ResourceListDocument
The HTTP server should return a list with all available transcoders.
dns:
Syntax dns: [//{dnsServer}/] {domainName}

Vidispine will perform a SRV lookup to retrieve the host and port of all available transcoders.

8.3 External transcoders

Using the external transcoder support in Vidispine it is possible to use transcoders from other companies, or to perform
transcodes in other ways. This is done using watch folders.

» With transcoders that support watch folders directly, it’s simply a matter of configuring both Vidispine and the
external transcoder to use the same watch folder.

* Transcoders that do not support watch folders can still be integrated with by writing a service that monitors the
watch folder and sends transcode request to the external transcoder accordingly.

Important:

* It is not possible to transcode using the Vidispine transcoder and an external transcoder at the same time.

* Itis only possible to transcode using one external transcoder shape tag at the time.

8.3. External transcoders 145



Vidispine REST APl Documentation, Release 4.2.2

* Only local file system (file://) methods are supported at the time, which means that both the Vidispine storage
and the external transcoder folders must be local.

8.3.1 How it works

When starting an import or transcode job, Vidispine will check if the given shape tag is defined to be handled by an
external transcoder. If it is, then the source file (e.g. the original essence of the item) will be copied to the transcoder’s
watch folder (e.g. <source> the external-transcoder ResourceDocument); then the job waits for one or more files
to appear in the destination folder (e.g. <destination> in ResourceDocument), and perform the rest steps. Note:
only the transcode step is handled by the external transcoder.

Settings

Filename pattern It is mandatory to define a filename pattern (a.k.a <regex>) in the external transcoder resource
to control what files the job should look for. In order to support multiple transcodes at the same time, the regex
will be prefixed using the file name of the essence automatically. That is:

If the original essence file name is VX-100, and the regex is . xoutput . », then Vidispine will look for files
matching \QVX-100\E. xoutput . *.

Timeout The output file must appear in the destination folder within this timeout, or the transcode step will be marked
as failed. The default timeout is 30 seconds.

Interval How frequently the destination folder should be checked for new or updated files. The default interval is 5
seconds.

Checks How many times an output file must remain unchanged for the file to be considered completely written. By
default files must remaing unchanged for 3 checks.

Changed in version 4.4.2: The interval and checks settings were added. Files may now also continue growing past the
timeout.

8.3.2 Adding an external transcoder

Add an external transcoder by creating an externalTranscoder resource using POST /resource.

POST /resource/externalTranscoder/
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<externalTranscoder>
<source>file:///C:/externalTranscoder/source/</source>
<destination>file:///C:/externalTranscoder/destination/</destination>
<shapeTag>external-format</shapeTag>
<timeout>60000</timeout>
<regex>.*demo.*</regex> <!-- Since Vidispine 4.0 ——>
</externalTranscoder>
</ResourceDocument>

8.3.3 Using an external transcoder

Before starting a transcode, make sure the shape tag in the example, has been defined in an external transcoder resource.

146 Chapter 8. Resources



Vidispine REST APl Documentation, Release 4.2.2

POST /shape-tag/external-format
Content-Type: application/xml

<TranscodePresetDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<format>mp4</format>
<audio></audio>
<video></video>

</TranscodePresetDocument>

The external transcoder is supported in AUTO_IMPORT and at the following requests
* POST /import
* POST /import/raw
* POST /item/ (item-id) /transcode

* POST /item/ (item—id) /shape/ (shape—-id) /transcode

8.4 Thumbnail resources

A thumbnail resource defines a directory on the file system where the thumbnail database files will be stored.

8.4.1 Adding a thumbnail resource

Add a thumbnail resource using POST /resource.

POST /resource
Content-Type: application/xml

<?xml version="1.0"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<thumbnail>
<path>file:///srv/thumbnails/</path>
</thumbnail>
</ResourceDocument>

8.4.2 Reading thumbnails

The thumbnails in that directory will then be available from the API as described on Thumbnail resource handling.
For example, all thumbnails can be listed using GET /thumbnail/ (resource-id).

GET /thumbnail/VX-2

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>vx-1</uri>
<uri>vx-3</uri>
<uri>vVx-4</uri>
<uri>vx-7</uri>
</URIListDocument>

However, you would typically not access thumbnails from that resource directly. Instead, fetch thumbnails for an item
using GET /item/ (item-id) /thumbnailresource orusing the thumbnail content parameter.

8.4. Thumbnail resources 147



Vidispine REST APl Documentation, Release 4.2.2

GET /item/VX-7/thumbnailresource

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<uri>http://localhost:8080/API/thumbnail/VX-1/VX-7;version=0</uri>
</URIListDocument>

GET http://localhost:8080/API/thumbnail/VX-1/VX-7;version=0

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>0@PAL</uri>

</URIListDocument>

8.4.3 How thumbnails are saved on disk

The thumbnails can be stored either in a database form or as one file per thumbnails (New in 4.2.2.).

Thumbnails are stored in the resolution and format as requested when the thumbnails were created, and it’s not possible
to for example request a thumbnail as a PNG if it has previously been created as a JPEG.

Database

The thumbnail path as specified in the ResourceDocument should have the format
* path (e.g. /srv/media/thumbnails/), or
e file URI (e.g. file:///src/media/thumbnails/)

Thumbnails are stored in a separate directory and database - one for each item. Vidispine will automatically migrate
the databases during runtime if necessary, so no special action is required when updating Vidispine to a newer version
or when restoring an old thumbnail backup on a newer system.

One file per thumbnail

New in version 4.2.2.
The thumbnail path as specified in the ResourceDocument should have the format
e URI with the direct+ prefix (e.g. direct+file:///src/media/thumbnails/

All URIs supported as Storage method URIs are supported.

Using a tree structure for thumbnails

Putting all files in the same directory of a storage can cause degraded performance on some file systems.

By setting the configuration property t humbnailHierarchy, the naming convention for the thumbnails’ folders
is changed to site-id — numberl / number2. The number set in thumbnailHierarchy controls the size of
number?2.

The thumbnailHierarchy works in the same way as £ i leHierarchy does for files. See Using a tree structure
for files for an example. The property works both for the database thumbnail storage and the direct thumbnail storage.

148 Chapter 8. Resources



Vidispine REST APl Documentation, Release 4.2.2

Warning: Changing the thumbnailHierarchy property will cause old thumbnails to be lost. If you need
to change the value on a system in production, please contact Vidispine.

8.5 Vidispine Server Agent

The Vidispine Server Agent, VSA, is a daemon process running on servers connecting to a Vidispine Server, VS. VSA
is composed of a Vidispine Transcoder and the VSA supervisor. VSA is connecting to the VS using SSH, and enables
a VS to see files remotely.

8.5.1 How to install VSA

Prerequisites

* A running VS instance, version 4.4 or newer

* A server running Ubuntu 14.04 or higher, 64-bit, or CentOS 6.5 or higher, 64-bit

Installation

Add the Vidispine repository according to the documentation on repository (http://repo.vidispine.com/). Then you can
install and start VSA. With Ubuntu/Debian:

> sudo apt-get install vidispine-agent vidispine-agent-tools

With CentOS/RedHat:

S sudo yum install vidispine-agent vidispine-agent-tools

Connecting to Vidispine

The configuration files are located in /etc/vidispine/. Configuration can be stored in either the file
agent .conf in this directory, or in files in the subdirectory agent .conf.d. It is recommended that a file is
created in the agent . conf . d directory. Specifically, there are two setting that has to be set: the connection to VS,
and the unique name of the VSA server. The first one you will get from the Vidispine instance.

1. On the Vidispine instance, install the vidispine-tools package and run

S sudo vidispine-admin vsa-enable

2. Fill in the user name, password and IP address. Enter the unique name, but you can leave the UUID empty.
3. Now, on the VSA server, add this information to /etc/vidispine/agent.conf.d/connection.

4. Start VSA:

S sudo start vidispine-agent
S sudo service transcoder start

5. Wait 30 seconds. Now verify that it is connected:

$ sudo vidispine—-agent-admin status

Agent, transcoder and Vidispine should all be ONLINE.

8.5. Vidispine Server Agent 149


http://repo.vidispine.com/

Vidispine REST APl Documentation, Release 4.2.2

8.5.2 Adding a share

On the VSA, run the following command:
S sudo vidispine-agent-admin add-local-share
This will add a share in VSA, and create a storage in VS. You can verify this by listing the storages (Retrieve list of

storages). The storage is listed with a method that has a vxa: URI scheme. The UUID (server part) of the URI
matches the UUID from vidispine-agent-admin status.

Warning: If the share is removed from the VSA, the storage will be automatically deleted from VS, including all
file information (but not the files themselves). In order to keep the storage, e.g., if the storage is moved from one
VSA to another, remove the vxaId metadata field from the storage.

Enable write access

When a new share is added, the storage method is marked as read-only. To enable writing to the share:
¢ set the write field of the method to true, and

* change the storage type to LOCAL (meaning it can be a target for all file operations)

Associate many VSAs to one storage
It is possible to have several VSA nodes serving one shared file system. This can be used for increasing transcoding
capability or to generated redundancy.

1. Add the share individually on all VSAs (see above). This will generate as many storages as there are VSAs.

2. Now copy the storage methods from all but the first storage to the first storage.

3. On the first storage, remove the vxald storage metadata (see above).

4. Remove all but the first storage.

150 Chapter 8. Resources



CHAPTER
NINE

TIMELINES AND SEQUENCES

9.1 Projects and sequences

9.1.1 ltem sequences

An item can hold a number of sequences, and is then called a sequence item. All sequences will be considered
equivalent by Vidispine, that is, that they represent the same logical sequence.

Sequences can also be imported and exported to and from common NLE formats.

The non-timed metadata of a sequence item will contain the following fields:

Field Name Value
__sequence_size | The number of sequences that exist for an item.
___sequence The format of a sequence that exist for an item.

9.1.2 Projects and project versions

A project is a special type of collection that contains a number of project versions. A project version is a collection that
contains the items and sequences that together represent a specific version. As both project and project versions are
ordinary collections it means that all existing collection operations can be used, for example editing project metadata.

Projects can also be imported and exported to and from common NLE formats.

Note: Projects and project versions are read-only and cannot be altered by manually adding or removing child items
or collections.

For a project version it is possible to store the original document representing the project, the Final Cut Pro XML
for example, as well as any additional representations, here called Project Version Definitions. Each representation is
stored as binary data, and is identified by a format identifier (e.g. £inalcut.)

Any string can be used as the format identifier, except the following which are reserved by Vidispine, but may be used
as long as the content matches.

Identifier Content Description
finalcut application/final-cut-pro Final Cut Pro 7 XML
finalcut-x | application/final-cut-pro-x | Final Cut Pro X XML
aaf application/aaf AAF

fabric application/fabric Fabric CEMS
vidispine application/x-vidispine SequenceType

151



Vidispine REST APl Documentation, Release 4.2.2

Example

For a project named “Unnamed project”:

<timespan start="-INE" end="+INEF">
<field>
<name>__type</name>
<value>project</value>
</field>
<field>
<name>__project_name</name>
<value>Unnamed Projekt</value>
</field>

</timespan>

For a project version with a single Final Cut Pro representation:

<timespan start="-INE" end="+INF">
<field>
<name>__type</name>
<value>projectVersion</value>
</field>
<field>
<name>__project_version</name>
<value>finalcut</value>
</field>

</timespan>

Metadata

Projects and project version collections contains additional (non-timed) metadata that may be useful when searching
for collection.

Field Name Value
_ _type project for project collections.
projectVersion for project version collections.
__project_name The name of the project.
__project_version | The format of the definitions that have been stored for a project version.

9.1.3 Project and sequence import and export

This page describes how to import and export projects and sequences from NLEs such as Final Cut Pro and Avid
Media Composer.

Inspecting a project file
Before a project or sequence can be imported, the project file has to be inspected in order to find out which clips
already exist in Vidispine as items, and which must first be imported.

The input should be an essence mappings document, which is also used for project and sequence import. It is required
so that Vidispine can identify the items and files referenced by the input project file. The document can specify:

* The SHA-1 hash of a file. The response will then contain all items and shapes that reference that specific file.

152 Chapter 9. Timelines and sequences



Vidispine REST APl Documentation, Release 4.2.2

* The item corresponding to a specific asset. Can be used after a previously unknown asset has been imported and
the correct item is known. If the item has multiple shapes then the shape id must be specified as well.

* If a storage has been locally mounted on the client, then a storage mapping containing the id of the storage and
the local path can be given. This will only be used if the input file references files by path.

Example

POST /collection/project/inspect?uri=file:///home/maria/sequence.xml&amp;type=£finalcut
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EssenceMappingDocument xmlns="http://xml.vidispine.com/schema/vidispine">
</EssenceMappingDocument>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<location>file:///home/maria/sequence.xml</location>
<asset>
<id>urn:uuid:8CEDSAFE-1A67-4632-AB57-D5F5B1E0BC49</id>
<name>Sequence 1</name>
<type>sequence</type>
<status>unknown</status>
</asset>
<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>
<type>clip</type>
<status>unknown</status>
<file>
<path>file://localhost/Users/maria/Sample%$20Clip%$20B.mov</path>
</file>
</asset>
<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>
<type>clip</type>
<status>unknown</status>
<file>
<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
</file>
</asset>
</ProjectFileDocument>

With the SHA-1 hash provided for all of the files:

POST /collection/project/inspect?uri=file:///home/maria/sequence.xml&amp;type=£finalcut
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EssenceMappingDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<file path="file://localhost/Users/maria/Movies/Vidispine/VX-1.mov" hash="7b8d6ffelea468800578d6b7¢
<file path="file://localhost/Users/maria/Sample%$20C1lip%20B.mov" hash="c7cfc97a9cf6634ad94766c0c4bl’
</EssenceMappingDocument >

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<location>file:///home/maria/sequence.xml</location>

9.1. Projects and sequences 153



Vidispine REST APl Documentation, Release 4.2.2

<asset>
<id>urn:uuid:8CEDSAFE-1A67-4632-AB57-D5F5B1EOBC49</id>
<name>Sequence 1</name>
<type>sequence</type>
<status>unknown</status>

</asset>

<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>
<type>clip</type>
<status>unknown</status>
<file>

<path>file://localhost/Users/maria/Sample%$20Clip%20B.mov</path>

</file>

</asset>

<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>

<type>clip</type>
<item id="VX-1" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
<hash>7b8d6ffelead68800578d6b7d4a09v012¢c461569</hash>
<file>
<id>vx-1</id>
<path>VX-1.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-1.mov</uri>
<state>CLOSED</state>
<size>30346173</size>
<timestamp>2011-10-13T07:41:48.053+02:00</timestamp>
<refreshFlag>727</refreshFlag>
<storage>VX-1</storage>
<item>
<id>vx-1</id>
<shape>
<id>vx-1</id>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
<component>
<id>vx-1</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
</ProjectFileDocument>

154 Chapter 9. Timelines and sequences



Vidispine REST APl Documentation, Release 4.2.2

After the new asset has been imported into Vidispine:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProjectFileDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<location>file:///home/maria/sequence.xml</location>
<asset>
<id>urn:uuid:8CEDSAFE-1A67-4632-AB57-D5F5B1EOBC49</id>
<name>Sequence 1</name>
<type>sequence</type>
<status>unknown</status>
</asset>
<asset>
<id>urn:uuid:FCAD0878-7129-43DA-A8A0-696590EFE4DA</id>
<name>Sample Clip B</name>

<type>clip</type>
<item id="VX-2" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Sample$20Clip%20B.mov</path>
<hash>c7¢c£fc97a9c£f6634ad94766c0c4b0789cd86bcc33</hash>
<file>
<id>vX-2</id>
<path>VX-2.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-2.mov</uri>
<state>CLOSED</state>
<size>30346173</size>
<timestamp>2011-10-13T07:42:48.178+02:00</timestamp>
<refreshFlag>727</refreshFlag>
<storage>Vx-1</storage>
<item>
<id>vx-2</id>
<shape>
<id>vX-2</id>
<component>
<id>VxX-2</id>
</component>
<component>
<id>VxX-2</id>
</component>
<component>
<id>vx-2</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
<asset>
<id>urn:uuid:76BE320F-48E0-47A5-A076-227158C50024</id>
<name>Clip A</name>

<type>clip</type>
<item id="VX-1" match="file" permission="OWNER"/>
<file>

<path>file://localhost/Users/maria/Movies/Vidispine/VX-1.mov</path>
<hash>7b8d6ffelead68800578d6b7d4a09b012c461569</hash>
<file>
<id>vx-1</id>
<path>Vx-1.mov</path>
<uri>file:///mnt/storage/Vidispine/VX-1.mov</uri>
<state>CLOSED</state>

9.1. Projects and sequences 155



Vidispine REST APl Documentation, Release 4.2.2

<size>30346173</size>
<timestamp>2011-10-13T07:41:48.053+02:00</timestamp>
<refreshFlag>727</refreshFlag>
<storage>VX-1</storage>
<item>
<id>vx-1</id>
<shape>
<id>vVx-1</id>
<component>
<id>Vvx-1</id>
</component>
<component>
<id>VxX-1</id>
</component>
<component>
<id>Vx-1</id>
</component>
<component>
<id>Vx-1</id>
</component>
<component>
<id>Vx-1</id>
</component>
</shape>
</item>
</file>
</file>
</asset>
</ProjectFileDocument>

9.2 Sequences definitions

9.2.1 SequenceDocument

SequenceDocument (XML complex type SequenceType) is a simple format for describing a sequence, with a model
similar to sequences in the Final Cut Pro XML interchange format.

Structure

A sequence consists of a number of audio and/or video tracks, each with a number of segments. Each segment has a
position in the timeline (in and out) and references a specific interval and track of an item (item, sourceTrack
(1-based), sourceIn and sourceOut.)

For video the sourceTrack element specifies the n th video track that should be included. For audio it specifies
a specific channel in an audio track. For example, for media with two audio streams each with two audio channels,
sourceTrack=3 would specific the first channel in the second audio stream.

The elements in / out and sourceIn / sourceOut corresponds to the Final Cut

Pro XML elements in / out and start / end respectively. See Timing Values
(http://developer.apple.com/library/mac/#documentation/Apple Applications/Reference/Final CutPro_XML/Topics/Topics.html#//apple_
CH294-SW12) for more information.

156 Chapter 9. Timelines and sequences


http://developer.apple.com/library/mac/#documentation/AppleApplications/Reference/FinalCutPro_XML/Topics/Topics.html

Vidispine REST APl Documentation, Release 4.2.2

Example

A sequence with a single video track with one second of video from the item with id VX-1.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>
<audio>false</audio>
<segment>
<item>VX-1l</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>25</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceIn>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>25</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
</SequenceDocument>

If the item has 10 minutes of video and stereo audio, it could be included in a sequence like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>
<audio>false</audio>
<segment>
<item>VX-1l</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>

9.2. Sequences definitions

157



Vidispine REST APl Documentation, Release 4.2.2

<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>
<track>
<audio>true</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>(0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourcelIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
</track>

158

Chapter 9.

Timelines and sequences



Vidispine REST APl Documentation, Release 4.2.2

<track>
<audio>true</audio>
<segment>
<item>VX-1</item>

<sourceTrack>2</sourceTrack>

<in>
<samples>0</samples>
<timeBase>

<numerator>1l</numerator>

<denominator>25</denominator>

</timeBase>

</in>

<out>
<samples>15000</samples>
<timeBase>

<numerator>1l</numerator>

<denominator>25</denominator>

</timeBase>

</out>

<sourceIn>
<samples>0</samples>
<timeBase>

<numerator>1l</numerator>

<denominator>25</denominator>

</timeBase>

</sourcelIn>

<sourceOut>
<samples>15000</samples>
<timeBase>

<numerator>l</numerator>

<denominator>25</denominator>

</timeBase>
</sourceOut>
</segment>
</track>
</SequenceDocument >

Effects

The table below describes the effects that can be added to segments in a sequence.

Effect Parameter | Range Description
left 0.0-1.0 Percentage to crop from left side of the picture
right 0.0-1.0 Percentage to crop from right side of the picture
crop
top 0.0-1.0 Percentage to crop from the top
bottom 0.0-1.0 Percentage to crop from the bottom
. vert -Inf-Inf Vertical offset in output in percentage.
position , . . .
horiz -Inf-Inf Horizontal offset in output in percentage.
scale scale 0.0—Inf Horizontal and vertical scale.
rotation rotation | Inf-Inf Number of degrees to rotate picture, clockwise, around center.
opacity opacity 0.0-100.0 | The opacity, from fully transparent (0.0) to fully opaque (100.0).

Effects are added in the follow way:

<segment>

<effect name="scale">

9.2. Sequences definitions

159



Vidispine REST APl Documentation, Release 4.2.2

<parameter name="scale" value="50"/>
</effect>
</segment>

Effects can also be applied at specific key frames.

<segment>

<effect name="scale">
<parameter name="scale">
<point position="0" value="0"/>
<point position="125" value="100"/>
</parameter>
</effect>
</segment>

Transitions

The table below describes the transitions that can be added between segments in video tracks in a sequence.
If a transition has a corresponding SMPTE wipe code (http://www.w3.0org/TR/2005/REC-SMIL2-20050107/smil-
transitions.html#TransitionEffects-Appendix) , then either the transition name or wipe code can be used to select
that transition.

Transition | SMPTE Wipe Code

Dissolves

CrossDissolve -

DitherDissolve -

FadeInOutDissolve | -

Wipes

BandWipe -

CentreWipe 21 or22

CheckerWipe -

InsetWipe 3,4,50r6

Iris Wipes

Crosslris 7

Diamondlris 102

Ovallris 119

Rectanglelris 101

Starlris 128
Example

A sequence with two clips that are transitioned using a star wipe:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SequenceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<track>
<audio>false</audio>
<segment>
<item>VX-1</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>

160 Chapter 9. Timelines and sequences


http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-transitions.html#TransitionEffects-Appendix

Vidispine REST APl Documentation, Release 4.2.2

<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceln>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceIn>
<sourceOut>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
<segment>
<item>VX-1l</item>
<sourceTrack>1</sourceTrack>
<in>
<samples>0</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15000</samples>
<timeBase>
<numerator>1l</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<sourceIln>
<samples>15000</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</sourceln>
<sourceOut>
<samples>30000</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</sourceOut>
</segment>
<transition>

9.2. Sequences definitions 161



Vidispine REST APl Documentation, Release 4.2.2

<in>
<samples>14975</samples>
<timeBase>
<numerator>l</numerator>
<denominator>25</denominator>
</timeBase>
</in>
<out>
<samples>15025</samples>
<timeBase>
<numerator>1</numerator>
<denominator>25</denominator>
</timeBase>
</out>
<transition>StarIris</transition>
</transition>
</track>
</SequenceDocument>

162

Chapter 9. Timelines and sequences



CHAPTER
TEN

USERS, GROUPS, AND ACCESS CONTROL

The user management system in Vidispine consists of users, groups, and roles.
* Roles are special groups, which cannot be added or deleted via the API.
* Regular groups and users can be added or deleted via the APL
» Users can belong to any number of groups or roles.
* Groups can depend on any number of groups or roles, although cyclic dependencies are not allowed.
* Roles cannot depend on any group or role.

To manage users and groups, see the Users and Groups and roles sections in the API reference.

10.1 Example

The following figure illustrates how users, groups and roles relate.

163



Vidispine REST APl Documentation, Release 4.2.2

(app_user)——
\_____ 4 o runas
( jdoe ) o - :
\____J_ A . _administrator :
\ regular_user |~ ,e _search |
. N /
— TS T :
d S N S T |
[ mrpink x R, import :
'.\h--h- p ___/\.M.-\-\"—-.\_\_ \\._". \\\ -
I .‘H"\-\._\_H- i / \\\._\\ ‘ i
- "
~ readonly_user [ » _metadata_w

In the figure above, there are:
e Sixroles: _run_as, _administrator,_search,_import,_metadata_w,and metadata_r.
e Two regular groups: regular_user and readonly_user.

The group readonly_user depends on the roles _search and _metadata_r. The second group,
regular_user depends on the roles _import and _metadata_w, and also the group readonly_user.

In the last relation, readonly_user is called the parent group and regular_user is the child group. A
user which belong to regular_user actually has all four roles.

e Three users: app_user, jdoe, and mrpink.

The user app_user has the role _run_as, jdoe has the roles _administrator, _search, _import,
_metadata_w and _metadata_r and mrpink has the roles _search and _metadata_r.

To visualize the users and groups like above, see User/group visualization.

10.2 Access control for items, libraries, collections

Items, libraries and collections have access control lists that determine what operations a user can perform. The entries
in the list either corresponds to a specific user or to an entire group.

10.2.1 Overview

Vidispine will use the access controls on the item, library or collection to determine if a user has access to perform a
specific operation or not.

164 Chapter 10. Users, Groups, and Access control



Vidispine REST APl Documentation, Release 4.2.2

All entities will have a OWNER access control that identifies the user that created the entity, and that grants full access
to it.

<AccessControlListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<access 1d="VX-21">
<loc>http://vs.example.com:8080/API/collection/VX-16/access/VX-21</loc>
<recursive>true</recursive>
<permission>OWNER</permission>
<user>admin</user>
</access>
</AccessControlListDocument>

Here the admin user has created a collection, and is thus the owner with full access. Access controls from collections,
and libraries, are inherited to the entities in them. The recursive element can be used to control if the access
control should apply to the child items or not.

Manage access controls using the access control resource on the entity in question. For example, to grant access to
Users, but only allow them access to certain shapes:

POST /collection/VX-16/access
Content-Type: application/xml

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<group>users</group>

</AccessControlDocument>

POST /collection/VX-16/access
Content-Type: application/xml

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>NONE</permission>
<group>users</group>
<operation>
<shape>
<tag>original</tag>
</shape>
</operation>
</AccessControlDocument>

To view the access controls that apply for an item, including any access controls inherited from parent collections or
libraries, see Viewing applied access controls.

10.2.2 Access levels

The higher levels grants the permissions of the lower levels.

NONE Grants no permissions whatsoever.

READ Grants permission to read.

WRITE Grants permission to write.

ALL The highest level that grants permissions to perform operations such as item deletion.

OWNER A specific case of ALL that is given by the system. This level cannot be added or removed.

10.2. Access control for items, libraries, collections 165



Vidispine REST APl Documentation, Release 4.2.2

10.2.3 Priority

The access control lists are sorted in order to determine which entry that applies to a given operation. The rule of
thumb here is that if there’s a matching access control entry set on the item then that applies otherwise the item’s
ancestor collections and libraries are traversed. Then the collection or library that grants the lowest access will apply.
If no matching access control entry can be found, access will be denied.

Furthermore an access control entry that is more specific take precedence over an entry that is less specific. If two
entries are determined equally specific then the entry that grants the highest access applies. An example of this is that
an entry that restricts access for an items entire metadata is considered less specific than one that only restricts access
for a certain field in the metadata.

The above can be illustrated by the priority list below:

1. Controls with a high explicit priority take precedence over controls with lower explicit priority.
Controls directly on the item take precedence over controls on ancestor collections and libraries.
Controls that describe specific users take precedence over controls that describe groups.

Controls that are more specific take precedence over controls that are less specific.

A

If directly applied to an item:

 Controls that grant more access take precedence over controls that give less access.
6. If applied to an ancestor collection or library:
» Controls that grant less access take precedence over controls that give more access.

An explicit priority can be assigned by setting the priority element in the AccessControlDocument to the desired
level. The default is 0. Note that only superusers can create access controls with an explicit priority as users would
otherwise be able to gain access to entities that they shouldn’t have.

10.2.4 Revoking access

The user that created an access control entry is also tracked. This is the grantor. It is also so that an entry is only valid
if the grantor still has access to the entity. This means that access can be revoked by removing the original entry that

granted access.
o

For example, let’s assume that user A is the owner and grants READ access to user B, that in turn grants READ access
to user C, as shown in the figure. Users A, B and C now all have read access. If the access control granting READ
access to user B then the user C will no longer have access.

10.2.5 Operation

There are different types of operations that can be restricted using access control lists. Parameters are optional and
makes the access control entry more specific. If no operation is specified then the entry will be considered generic and
apply to the entire item.

166 Chapter 10. Users, Groups, and Access control



Vidispine REST APl Documentation, Release 4.2.2

URIs

Operation /item/ {item-id} /uri
Parameters | type ‘ The type of the URI to restrict.

Example

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<user>testuser</user>
<operation>
<uri>
<type>lowres</type>
</uri>
</operation>
</AccessControlDocument>

Shapes

Operation /item/ {item-id} /shape
Parameters | tag \ Restrict access to shapes with this tag.

New in version 4.1.

Example

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>NONE</permission>
<user>testuser</user>
<operation>
<shape>
<tag>lowres</tag>
</shape>
</operation>
</AccessControlDocument>

Metadata

Operation | /item/ {item-id} /metadata
Parameters | field ‘ The name of the field to restrict.

Caution: Removal of fields are currently not restricted
Currently fields can be removed without checking the specific access control entry.

Example

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine”>
<permission>READ</permission>
<user>testuser</user>

10.2. Access control for items, libraries, collections 167



Vidispine REST APl Documentation, Release 4.2.2

<operation>
<metadata>
<field>title</field>
</metadata>
</operation>
</AccessControlDocument>

10.3 Access control for metadata fields

Metadata field access control lists can be used to control the usage of metadata fields and metadata field groups at a
global level, i.e. they apply to all items. The default behavior for a field or a group without any access control list is to
grant everyone full permissions.

In case of a conflict, i.e. one or more entries in the access control list for a certain field or group applies to the same
user - the entry granting the highest level of permissions apply.

Note that metadata field access control lists are applied after any other access control list have been applied. So for
example a metadata field access control list won’t grant a user access to a certain field of an item’s metadata if the user
cannot access the item in the first place.

10.3.1 Permission levels

There are four levels of permission, higher levels of permissions include all other permissions. The semantics of each
permission differs depending on if it is associated with a group or a field.

Per- Field Group

mis-

sion

NONE | Grants no permissions Grants no permissions whatsoever.
whatsoever.

READ | Determines if user can see the Allows for the group to be retrieved and seen when it is listed.
contents of a field. Also allows for the group to be associated with items.

WRITE| Allows a user to set the value of a | Allows fields to be added and removed from the group.
field.

DELETE Allows a user to delete a field Allows deletion of the group.
from the metadata of an item.

10.4 User authentication

Authentication of users in Vidispine can be performed in a number of ways depending on the requirements of the
calling application.

1. By passing the user credentials to Vidispine on each request and letting Vidispine authenticate the user based on
the credentials stored in the Vidispine database.

The default HTTP authentication method is HTTP basic authentication. To use a custom HTTP authentication
method, have a look at Apache Shiro Integration.

2. Using Run-As: The application can itself authenticate the user and then connect to Vidispine using a service
account with the Run-As privilege and with the Run-As option enabled, so that the request is then performed as
the already authenticated user.

168 Chapter 10. Users, Groups, and Access control



Vidispine REST APl Documentation, Release 4.2.2

3. Creating a time-limited token using the API with one of the options above, see Get an authentication token for
a user. This token can then be used in subsequent calls as credential by specifying the http header:

Authorization: token {token}

10.4.1 Run-As option

The API supports the operation of having the calling application authenticate itself via a single password or a single
certificate credential. The actual end-user can then be specified by the RunAs HTTP header. The calling application
credential must have _administrator or _runas role. The actual end-user roles will be determined by the
RunAs user’s credentials.

A typical UI application scenario would be:
1. Have the user log in by providing user name and password.
2. Authenticate the user with /user/{user-name}/validate.
3. Store the user name with the session.

4. Use the RunAs header with all communication to the Vidispine API.

10.4.2 Apache Shiro Integration

New in version 4.1.

As of Vidispine 4.1 requests can be forwarded to Apache Shiro (http://shiro.apache.org/) for authentication, making it
is possible to customize how existing users in Vidispine are authenticated. The Apache Shiro version that is bundled
with Vidispine can be seen in the table below.

Vidispine version | Apache Shiro version
4.1 1.2.2

Custom configuration

On startup Vidispine will try to read a Apache Shiro INI configura-
tion (http://shiro.apache.org/configuration.html#Configuration-INIConfiguration) file from
$instanceRoot/[config/]shiro.ini. On GlassFish installations the instance root folder is typically
glassfish/domains/domainl/.

The default configuration file that can be used as a template can be seen below.

Note: The token authentication filter and the Vidispine realm must always be kept so that requests performed inter-
nally by Vidispine will still function.

[main]

vidispineRealm = com.vidispine.security.auth.DefaultVidispineRealm
tokenAuth = com.vidispine.security.auth.TokenAuthenticationFilter
deny = com.vidispine.security.auth.DenyFilter

securityManager.realms = $vidispineRealm
authcBasic.applicationName = vidispineRealm

[urls]
/** = noSessionCreation, tokenAuth[permissive], authcBasic

10.4. User authentication 169


http://shiro.apache.org/
http://shiro.apache.org/configuration.html#Configuration-INIConfiguration
http://shiro.apache.org/configuration.html#Configuration-INIConfiguration

Vidispine REST APl Documentation, Release 4.2.2

Installing a custom filter or realm

1. Make the JAR file containing your custom filter or realm available on the classpath. On GlassFish the JAR file

should be copied to glassfish/1lib/.
2. Create a shiro.ini file based on the above template and modify it to your needs.

3. Start/Restart the application server.

Example: Static credentials

This is an example showing how to add a custom realm, in this case
(http://shiro.apache.org/configuration.html#Configuration-%5Cusers%5C) that defines credentials
set of users directly in the configuration file.

[main]

vidispineRealm = com.vidispine.security.auth.DefaultVidispineRealm
tokenAuth = com.vidispine.security.auth.TokenAuthenticationFilter
deny = com.vidispine.security.auth.DenyFilter

securityManager.realms = $iniRealm, S$vidispineRealm
authcBasic.applicationName = "vidispineRealm"

[urls]
/+* = noSessionCreation, tokenAuth[permissive], authcBasic

[users]
admin=password

Testing the configuration:

GET /API/version HTTP/1.1

Authorization: Basic YWRtaW46cGFzc3dvemQ=
User-Agent: curl/7.32.0

Host: localhost:8080

Accept: */*

HTTP/1.1 200 OK

GET /API/version HTTP/1.1
Authorization: Basic YWRtaW46YWRtaWd=
User—Agent: curl/7.32.0

Host: localhost:8080

Accept: */x

HTTP/1.1 200 OK

GET /API/version HTTP/1.1

Authorization: Basic YWRtaW46aW52YWxpZA==
User—-Agent: curl/7.32.0

Host: localhost:8080

Accept: */x*

HTTP/1.1 401 Unauthorized

a IniRealm
for a static

170 Chapter 10. Users, Groups, and Access control


http://shiro.apache.org/configuration.html#Configuration-%5Cusers%5C

Vidispine REST APl Documentation, Release 4.2.2

Note: By default Apache Shiro will accept a request if at least one realm accepts the provided credentials, which
is why the passwords password (accepted by iniRealm and admin (accepted by vidispineRealm) are both

accepted.

OAuth 2.0

New in version 4.4.

Version 4.4 contains a Shiro filter that can be used to authenticate Bearer tokens. To use, add the following to
shiro.ini:

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter

[urls]

/+* = noSessionCreation, tokenAuth[permissive], oauth2Auth[permissive], authcBasic

The validation of tokens can be done in three ways:
1. By checking the token against a static public key in an X.509 certificate.
2. By checking the token against public keys given by federation metadata.

3. By checking the token against a validation provider.

Example: static public key

To set a static public key, add the following to shiro.ini:

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
ocoauth2Auth.x509Certificate = {x509-certificate}

oauth2Auth.tokenUser = email # example

[urls]

/** = noSessionCreation, tokenAuth[permissive], oauth2Auth[permissive], authcBasic
Where {x509-certificate} is an X.509 certificate encoded with Base64, e.g. MII. . .==. Vidispine will use

this certificate and verify that the token’s signature matches the certificate. Then, the tokenUser property is used to
describe which key in the token’s JSON object that should be used as the Vidispine user name.

Example: federation metadata

Federation metadata is similar to a static certificate, but multiple certificates can be used, and they are automatically
downloaded regularly.

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth. federationMetadataURI = https://login.microsoftonline.com/common/FederationMetadata/2007~
oauth2Auth.federationMetadatalInterval = 86400

10.4. User authentication 171



Vidispine REST APl Documentation, Release 4.2.2

oauth2Auth.expectedAudience = https://graph.windows.net
oauth2Auth.tokenUser = unique_name

[urls]
/+* = noSessionCreation, tokenAuth[permissive], oauth2Auth[permissive], authcBasic

Example: validation service

Here, The token is validated against validation server. The result is stored in cache for 10 minutes.

[main]

oauth2Auth = com.vidispine.security.auth.BearerAuthenticationFilter
oauth2Auth.validationEndpoint = https://www.googleapis.com/userinfo/v2/me
oauth2Auth.tokenUser = email

[urls]
/** = noSessionCreation, tokenAuth[permissive], oauth2Auth[permissive], authcBasic

In the example above with Google, the https://www.googleapis.com/auth/userinfo.email scope is used.

10.5 LDAP

Vidispine can authenticate users against an LDAP server and automatically synchronize users and groups from a
directory at regular intervals if required.

10.5.1 User authentication

For users to be authenticated by an LDAP server, the server must first be configured in Vidispine.

1. An LDAP resource must be created, containing the connection details. There can currently only be one config-
ured LDAP resource.

2. LDAP authentication must be enabled using the 1dapAuthentication configuration property.

Users that are successfully authenticated will be added to Vidispine and will have the _user role by default.

Example: Enabling LDAP authentication

First, create the LDAP resource:

POST /resource
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>
<url>ldap://someserver:389</url>
<useStartTLS>false</useStartTLS>
<userDN>cn=Users, dc=example, dc=com</userDN>
<usernameAttribute>sAMAccountName</usernameAttribute>
<userSearchFilter> (objectClass=user) </userSearchFilter>

172 Chapter 10. Users, Groups, and Access control


https://www.googleapis.com/auth/userinfo.email

Vidispine REST APl Documentation, Release 4.2.2

<bindDN>cn=Administrator, cn=Users, dc=example, dc=com</bindDN>
<bindPassword>password</bindPassword>
</1ldap>
</ResourceDocument>

Then enable LDAP authentication:

PUT /configuration/properties
Content-Type: application/xml

<ConfigurationPropertyDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<key>ldapAuthentication</key>
<value>true</value>

</ConfigurationPropertyDocument>

Configuration

The elements in the LDAP resource are:

url The LDAP server(s) to connect to. Specify multiple servers to enable failover. Can be either 1dap:// or
ldaps:// (for SSL).

useStartTLS Enables/disables StartTLS. Will be ignored when connecting using SSL.
userDN The user search base.

userSearchFilter The user search filter. The default is (objectClass=x). The search filter and username
attribute together define the filter that is used in the user query:

(@ (‘userSearchFilter') (‘usernameAttribute ‘=username) )

If a single entry is found then a second bind is made to authenticate the user.

usernameAttribute The attribute that contains a users username/login name. Must uniquely identify a user. The
default is sAMAccountName.

realNameAttribute The attribute that contains a users real name. The default is cn.

cacheLifetime Passwords are cached to reduce the number of requests made to the server. This element specifies
how long password should be cached (in milliseconds). The defaultis 1800000 (30 minutes).

usernameFormat Can be setto lower to force Vidispine to lower case all usernames read from the LDAP server.
The bind properties can be set so that Vidispine authenticates using a bind request before searching for users or groups:
bindDN The DN of the entry to bind to before searching for a user.

bindPassword The password to provide in the bind request.

10.5.2 User and group synchronization
Vidispine can automatically synchronize users and groups, as well as user and group dependencies. Synchronization
will be enabled if the sync element has been set.

Users from the directory that do not exist in Vidispine can be automatically created. If this should be enabled or not is
typically a matter of:

* Licensing. If you are restricted to a certain number of users, then you may not want to create them in Vidispine
if they are not using the system.

* Application needs. Access to an item can only be granted to a user that exists in Vidispine for example.

10.5. LDAP 173



Vidispine REST APl Documentation, Release 4.2.2

Caution: Password validation using PUT /user/ (username) /validate will not work for imported users
unless t ype=raw. This because a users password won’t be available until the user has authenticated successfully
at least once before. Validation should instead be performed using normal HTTP authentication.

Configuration

The sync element in the LDAP resource controls the synchronization:
sync If set then users and groups will periodically be updated from the LDAP server.

sync/interval The interval in milliseconds between synchronization attempts. The default is 1800000 (30
minutes).

sync/importOrganizationalUnits Indicates whether or not organizational units should be created as
groups in Vidispine. Only units having users or groups will be added (as well as the parent units to these.)

sync/createUsers If new users should automatically be created. If false, then existing users will be updated
by new/unknown users will be ignored.

sync/createGroups If new groups should automatically be created. If false, then existing groups will be
updated by new/unknown groups will be ignored.

Old installations may still use the import element.

import Deprecated since version 4.0: The import element was previously used to enable synchronization. Use
sync with createUsers=true and createGroups=true instead.

How groups are synchronized can be configured using the elements below.

groupDN The group search base. The default is the same as userDN.
groupSearchFilter The group search filter. The defaultis (objectClass=group).
groupnameAttribute The attribute that contains a groups name. The default is name.

Subgroups are supported, that is, if the LDAP group query returns two groups, A and B, and B is listed as a member
of A, then B will be added as a subgroup of A in Vidispine.

Examples

Importing all users from the Users organizational unit from an Active Directory server:

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>
<url>ldap://example.com:389</url>
<userDN>cn=Users, dc=example, dc=com</userDN>
<usernameAttribute>sAMAccountName</usernameAttribute>
<userSearchFilter> (objectClass=user) </userSearchFilter>
<bindDN>cn=Administrator, cn=Users, dc=example, dc=com</bindDN>
<bindPassword>{password}</bindPassword>
</ldap>
</ResourceDocument>

Importing only members of a certain group:

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>

<userSearchFilter> (&amp; (objectClass=user) (memberOf=cn=mam, cn=Groups, dc=example, dc=com) ) </userSe:

174 Chapter 10. Users, Groups, and Access control



Vidispine REST APl Documentation, Release 4.2.2

<groupSearchFilter> (&amp; (objectClass=group) (memberOf=cn=mam, cn=Groups, dc=example, dc=com) ) </grouj
</1ldap>
</ResourceDocument>
Importing no groups, but creating groups to mirror the organizational unit tree structure.

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<ldap>

<groupSearchFilter> (&amp; (objectClass=group) (|))</groupSearchFilter>
<import>
<importOrganizationalUnits>true</true>
</import>
</ldap>
</ResourceDocument>

The user Joe (cn=Joe, ou=Users, dn=example, dc=com) would then be added to the Users group.

Trigger LDAP synchronization

This resource can be used to force a synchronization of users and groups, for example to verify that it is working
properly.

POST /resource/ldap/ (resource-id) /sync
Triggers a synchronization of users and groups.

If users and groups are already synchronizing, than this will have no effect.

10.5.3 Troubleshooting

If you are having problems with the LDAP integration then the best place to start is to check the LDAP self test. The
test will connect to the LDAP server and list the users and groups that are found using the current configuration.

GET /self-test/ldap
Content-Type: application/xml

<SelfTestDocument xmlns="http://xml.vidispine.com/schema/vidispine" name="ldap" status="ok" took="1lm:
<message>No LDAP resource has been defined</message>
</SelfTestDocument>

You can also use tools such as ldapsearch (http://www.openldap.org/software/man.cgi?query=ldapsearch) or
1dp.exe to verify the configuration:

$ ldapsearch -h ad.example.com -D "CN=VS,OU=Users,DC=example,DC=com" -W -b "OU=Users,DC=example, DC=c
If the configuration is correct, but users are still not being authenticated properly, then set the following log levels, try
to authenticate once more and then check the application server log file to see what is going on.

com.vidispine.security=FINEST
com.vidispine.authentication=FINEST

For example, this error would indicate that the userDN element is missing:

Caused by: com.sun.enterprise.security.auth.realm.BadRealmException: A search base DN must be provide
at com.vidispine.security.auth.realm.MultiRealm.init (MultiRealm. java:89)
at com.sun.enterprise.security.auth.realm.Realm.doInstantiate (Realm. java:233)

10.5. LDAP 175


http://www.openldap.org/software/man.cgi?query=ldapsearch

Vidispine REST APl Documentation, Release 4.2.2

Users are not assigned to the correct groups

Users will only be added to LDAP groups that have a corresponding group in Vidispine. If LDAP import is enabled
then groups will also be created. Verify that the name attribute of the group corresponds to the name of the group in
Vidispine.

Note that if a group is removed from the directory then the users will still be a part of the group. This is because we
currently do not track which groups are to be synchronized with the groups from the directory, except by name.

Users can only log in by entering their upper case username

What you can do is set usernameFormat to lower in the LDAP resource. Vidispine will then lower case all
usernames read from the LDAP directory. Your users can then login by entering their username in lower case, or in
any letter case if your application is lower casing usernames.

Disabled the user can still login

A user will be marked as disabled if:
* The user has been removed from the directory.
* If the user has been disabled (Active Directory only.)

If users should be disabled based on some other criteria then update the user search filter so that it excludes users
accordingly. For example:

(& (objectClass=user) (! (userAccountControl:1.2.840.113556.1.4.803:=2)))

It’s still not working

Contact us directly and we will try to figure out what’s going on.

176 Chapter 10. Users, Groups, and Access control



CHAPTER
ELEVEN

MULTI-SITE

11.1 Multi-site

Vidispine supports syncing between remote sites, this is handled via site rules. In order to start using the multi-site
capabilities, the sites must first be set up so they know about each other.

11.1.1 Site names

Every site must have a name. Out of the box, a Vidispine instance will have the site name VX. The site name determines
what prefix the ID:s in the system will get (e.g. VX-1234) The site name can be changed by setting the Java system
property com.vidispine.site. It is important that every site in a multi site setup have different names.

11.1.2 Multi site setup

Before anything can be synced between sites, Vidispine must be told how to connect to the remote sites. This is done
by adding a site definition for each remote site. How this is done in practice is described in the reference section.

It is important to note that all sites must know about all other sites in order for the syncing to work properly! It is also
important that the clocks on the different servers are set correctly, since for some operations the timestamps of changes
are important.

11.1.3 Site rules

To determine which entities to sync to remote sites, Vidispine uses site rules. Site rules can be defined for a number of
different entity types, and the rules can also define what parts of the item should be synced.

Site rules can be set for individual entities or collectively for all entities of a specific type (e.g. you could set a site rule
applying only to item VX-100, or a rule that applies to all items in the system).

Site rules can be added for the following entity types:
 Items
* Collections All child entities will also be synced.
 Libraries All child items will be synced.
» Users Will also sync any parent groups.
» User groups Any child groups and users will be synced with the group.

Depending on what entity type the rule is posted to, a number of different settings are available. For item, collection
and library rules, the following settings are available:

177



Vidispine REST APl Documentation, Release 4.2.2

* metadata Whether or not to sync metadata

» access Whether or not to sync ACLs for the entities. This also requires that the affected users and groups have
been synced, otherwise this setting will have no effect.

 shape Determines whether or not to sync a shape containing this tag.
* files Whether or not to also sync files or just shape information.
User and group rules have no special settings.

Setting a site rule on an entity will cause it to be synced to the remote site specified in the rule, and any future changes
will also be synced. A synced item will be synced both ways. So any changes made on the remote site will be synced
back to the original site as well.

Example

The following XML would describe a site rule for an item to the site NY. Metadata is synced, ACLs are not synced,
and any web and editing shapes will be synced along with the files:

<SiteRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<site>NY</site>
<metadata>true</metadata>
<access>false</access>
<shape>web</shape>
<shape>editing</editing>
<files>true</files>
</SiteRuleDocument>

11.1.4 Conflicts

When having a synced item on several sites, there is always the possibility of metadata conflicts occurring. In the
Vidispine multi-site setup, it is handled as “last edit wins”. Meaning that the edit with the latest timestamp will win.
This does not mean that the older change is lost however. A full history of all edits will still be available on all sites,
and the old value can be manually brought back with a later edit.

178 Chapter 11. Multi-site



CHAPTER
TWELVE

MONITORING

To get better insight into the operations of jobs and services you can collect metrics into your favorite monitoring
service. Metrics are exposed using JMX and StatsD (https://github.com/etsy/statsd/).

Transcoders on the other hand only expose metrics using StatsD.

New in version 4.2.3.

12.1 StatsD

By default metrics are not sent to a StatsD server. To enable it you have to update the metrics configuration. For
example, to have metrics sent to a StatsD server on 1ocalhost listening on UDP port 8125, use:

PUT API/configuration/metrics
Content-Type: application/xml

<MetricsConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<statsd/>
</MetricsConfigurationDocument>

Metrics sent to StatsD are by default prefixed with vs.. To have metrics sent with the prefix vs1., for example if
you have multiple instances running:

PUT API/configuration/metrics
Content-Type: application/xml

<MetricsConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<statsd>
<host>metrics.example.com</host>
<port>6125</port>
<prefix>vsl</prefix>
</statsd>
</MetricsConfigurationDocument>

Here metrics are sent to an external StatsD server on the non-standard port 6125. Note that the . between the prefix

and metric name is added automatically.

12.1.1 Filtering metrics

You can set inclusion and exclusion filters to restrict which metrics are sent to the StatsD server. The default is to
include all and exclude none.

Inclusion/exclusion filters may have a leading or trailing wildcard. For example, to exclude all storage. £s metrics:

179


https://github.com/etsy/statsd/

Vidispine REST APl Documentation, Release 4.2.2

<MetricsConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<statsd>
<exclude>storage. fs.*</exclude>
</statsd>
</MetricsConfigurationDocument>

12.1.2 Tagged metrics

Some metrics are tagged with additional information. These are sent to StatsD in the format:

<metricname>:<value>|<type>|#<tag>+

A job.step.execution.time metric might for example be sent as:

vs.job.step.execution.time:123 |ms|#type:placeholder—-import, step:100, sync

If your StatsD server does not support such tags then they can be disabled by setting tags to false:

<MetricsConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<statsd>

<tags>false</tags>
</statsd>
</MetricsConfigurationDocument>

12.2 JMX

Each metric is exposed as an JMX MBean in the “metrics” domain. You can view the metrics using for example:
e A JMX client such as VisualVM (http://visualvm.java.net/) with the VisualVM-MBeans plugin, or JConsole.
* Programmatically using the Java JMX client interface.

* Over HTTP/JISON using a bridge such as Jolokia (http://www.jolokia.org/).

12.3 Metrics

Metrics are exposed as either meters, timers or gauges. The name of a metric is meant to be self-explanatory. Timers
are suffixed with t ime and meters are named as past tense verbs, while gauges make up the rest.

The StatsD type used for each metric, and the statistics exposed over JXM for each type are:

Type | StatsD type | MBean attributes

Meter | c¢ The count, mean and 1/5/15-minute rates.

Gauge | g The value.

Timer | ms The count, min/max/mean/stdev, rates and percentiles.

12.3.1 Indexing

e Meters:

— reindex.{index}.started

180 Chapter 12. Monitoring


http://visualvm.java.net/
http://www.jolokia.org/

Vidispine REST APl Documentation, Release 4.2.2

reindex

indexer.

¢ Timers:

indexer.
indexer.
indexer.

indexer.

.{index}.finished

solr.request.failed

solr.update.time
solr.delete.time
solr.commit.time

{index} .index.time

% With index being one of item/collection/acl/file.

12.3.2 Job

¢ Meters:

job.created

job.started

job.finished

job.failed

job.blocked

* Gauges:

— job.total.{state}

* Where state is the name of a job state, lower cased and with _ replaced with —. For example
finished-warning

e Timers:

— job.{type}.step.{step}.{sync}.execution.time

- job.step.execution.time

# Tagged with type: {type}, step: {step} and sync/async

12.3.3 Solr

¢ Meters:

solr.request.failed

¢ Timers:

solr.query.time

solr.update.time

solr.commit.soft.time

solr.commit.hard.time

solr.optimize.time

12.3. Metrics

181



Vidispine REST APl Documentation, Release 4.2.2

12.3.4 Storage

e Meters:

storage.
storage.
storage.
storage.
storage.

storage.

file.found
file.changed
file.deleted

file.hashed

file.checksum.bytes.read

fs.stat

+ The number of stat call made.

12.3.5 Transfer

¢ Meters:

transfer.

transfer.started

transfer.finished

transfer.finished-part

transfer.failed

transfer.blocked

12.3.6 Service

¢ Meters:

— service.exception

* Gauges:

— service.load.5

% The 5 minute load

— service.load.60

% The 60

minute load.

12.3.7 Transcoder

* Gauges

— transcoder. {transcoder-id}

transcoder. {transcoder—-id}

transcoder. {transcoder-id}

transcoder. {transcoder—-id}

transcoder. {transcoder-id}

bytes.transferred

. jobs
. jobs.
. jobs.
. jobs.

. jobs.

.running

finished
failed
{transcoder-job-type}.running

{transcoder-job-type}.finished

182

Chapter 12. Monitoring



Vidispine REST APl Documentation, Release 4.2.2

— transcoder. {transcoder-id} . jobs.{transcoder—-job-type}.failed
¢ Counters

— transcoder. {transcoder-id} .muxer.video.frames

transcoder. {transcoder-id}.encoder. {codec}.frames

transcoder. {transcoder—-id} .decoder. {codec}.frames

transcoder. {transcoder-id}.io. {protocol}.{direction}.bytes

12.3. Metrics 183



Vidispine REST APl Documentation, Release 4.2.2

184 Chapter 12. Monitoring



CHAPTER
THIRTEEN

CONFIGURATION AND INTEGRATION

13.1 System configuration

13.1.1 Indexing configuration

The indexing configuration contains the parameters that relate to search and indexing.
* Where Vidispine can reach Solr or ZooKeeper.
* When to commit or soft commit.
* The Solr query request parameters.
* The default field settings.

This configuration replaces the configuration properties listed under Search and indexing.

Example

Full text indexing could be disabled for all fields, unless explicitly specified for a field, using:

<IndexingConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<solrPath>http://localhost:8088/solr</solrPath>
<fieldDefault>
<name>x*</name>
<fullText>false</fullText>
</fieldDefault>
</IndexingConfigurationDocument>

13.1.2 Metrics configuration

See StatsD on how to configure how metrics are sent to StatsD. The configuration resource is described at Metrics
settings.

13.1.3 FTP pool configuration

New in version 4.2.4.

By default jobs that need to read or write to an FTP server will establish, use and end separate connections to the
server. By configuring a FTP connection pool you can change so that the jobs share and reuse FTP connections. This
can reduce the time it takes to transfer files over high latency connections.

185



Vidispine REST APl Documentation, Release 4.2.2

For example, to create a connection pool with the default settings:

PUT /configuration/ftp-pool
Content-Type: application/xml

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool/>
<FtpPoolConfigurationDocument/>

If no pool is specified then pooling will be disabled. Unless overridden, the pool will be unbounded, and connections
will expire after 1 minute. That is, the above configuration is identical to:

PUT /configuration/ftp-pool
Content-Type: application/xml

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<minSize>0</minSize>
<maxSize>-1</maxSize>
<evictionInterval>30000</evictionInterval>
<minIdleTime>60000</minIdleTime>
</pool>
<FtpPoolConfigurationDocument />

The FTP pool configuration resource is described at F'TP pool configuration.

13.1.4 Database purging

Vidispine supports mechanisms for purging old information in database tables. Especially three tables can grow quite
large without purging enabled.

Change-log table

New in version 4.2.4.

The change-log table holds information about data that should be sent to other sites. If multi-site is disabled
(disableSiteCrunching), this table grows forever.

To enable purging of the table, two configuration properties are used: changelLogPurgingTime and
changeLogForcePurgingTime. The first one controls deletion of entries that have been processed, the other
one controls deletion of entries regardless of state.

Sensible values are 43200 and 86400, corresponding to one and two months, respectively.

Audit trail table

New in version 4.2.4.
The audit trail table contains all API requests, see Audit trails.

To enable purging of the table, two configuration properties are used: auditTrailPurgingTime and
auditTrailPurgingDirectory. Both must be set in order for purging to take place.

When purging is enabled, entries that are older than auditTrailPurgingTime will be removed and put in a file
inside the auditTrailPurgingDirectory folder.

A sensible value is 43200 or higher, corresponding to one month.

186 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

Job table

New in version 4.3.

To enable purging of the table, two configuration properties are used: jobPurgingTime and jobPurgingDirectory. Both
must be set in order for purging to take place.

When purging is enabled, entries that are older than jobPurgingTime will be removed and put in a file inside the
jobPurgingDirectory folder.

13.1.5 Configuration properties

Configuration properties are used in Vidispine to control system-wide parameters.

General

apiUri
URI to Application Server. Used by transcoder(s), so need to be proper host if transcoder(s) run on another
machine.

Mandatory Yes
Example http://localhost:8080/API/

apiNoauthUri
URI to Application Server, to use to access the no-auth APIL. Used by transcoder(s), so need to be proper host if
transcoder(s) run on another machine.

Example http://localhost:8080

clusterName
Optional alphanumerical identifier for the Vidispine installation/cluster. Must be set (to a unique identifier) if
multiple Vidispine installations are to share a common set of transcoders.

Example ABPRD, ABDEV, BCPRD
Since 4.4

disableSiteCrunching
Do not build site replication packages. Recommended to be set to t rue for systems not running site replication.

Default true since 4.2.6. Previous versions: false
Since 4.0.4

validatexml
Enable schema validation of the incoming and outgoing xml document.

Default false
Since 4.2.1

slavelicenseProxy
Use a proxy for Connection to Vidispine master license service. Format is

ehttp://IP:port/ or
esocks://IP:port/
Proxy authentication is not supported.

Default none

13.1. System configuration 187



Vidispine REST APl Documentation, Release 4.2.2

Since 4.2.5

Search and indexing

Deprecated since version 4.2: The Solr and ZooKeeper properties are deprecated. Use Indexing configuration instead.

solrPath
URI ( not path! ) to Solr.

Mandatory Yes (No for SolrCloud)
Example http://localhost:8081/solr/

zkHost
For SolrCloud: A comma separated list of host:port pairs to the servers in the ZooKeeper ensemble.

Mandatory No (Yes for SolrCloud)
Example 1ocalhost:3000, example.com:3001
Since 4.1

solrCollection
For SolrCloud: The collection in Solr to be used by Vidispine.

Mandatory No (Yes for SolrCloud)
Example collectionl
Since 4.1

solrQueryTimeout
The request timeout in milliseconds to use when querying Solr.

Default 60000
Since 4.1.1

solrPingAttempts
The number of times to ping a Solr node before aborting an active request.

Default 5
Since 4.1.1

solrPingTimeout
The request timeout in milliseconds to use when checking if a Solr node. is alive

Default 5000
Since 4.1.1

solrCommitInterval
The interval (in milliseconds) of Vidispine sending hard commit to Solr.

Default 10000

solrSoftCommitInterval
The interval (in milliseconds) of Vidispine sending soft commit to Solr.

Default -1 (disable)

solrAutoSoftCommit
If Vidispine should sending soft commit to Solr automatically.

188 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

Default true

solrUpdateQueueSize
Number of documents Vidispine will send in batch to Solr.

Default 100

indexFieldGroups
If metadata field groups should be indexed in Solr. Setting this to false can reduce the load and the size of
the index if items have a large number of groups in the metadata, but will mean that no results will be available
when searching for field groups.

Default true

indexCollectionItemOrder
If the order of an item in a collection should be indexed in Solr. Settings this to false can greatly reduce the
number of fields created in Solr and improve performance on systems with a lot of collections. This affects
collection item retrieval. See also Ordering collections.

Recommended to be set to false for applications not relying on that feature. Requires a clean Solr index and
a full re-index to take effect.

Changed in version 4.4: This is now disabled by default.
Default false
Since 4.2.8

indexTimespans
If time coded metadata should be indexed in Solr. Setting this to false can reduce the load and the size of the
index if items/collections have a large number of timespans in the metadata, but will mean that no time coded
metadata can be found.

Default true
Since 4.2.13

maxSearchResults
Maximum number of search results allowed to be returned (see Search items).

Default 100

legacyTransientFieldTypes
This setting controls the datatype of the transient metadata fields. If t rue then all transient fields will be of
type string. If false the x_size and «_count fields will be of type integer, and the rest will have
type string.

Default true

Metadata

disableMetadataSchema
If a metadata schema has been defined (see schemas), allows metadata that does not comply to the schema.

Default false
Authentication
passwordHashAlgorithm

The hash algorithm used to hash all user passwords. Note that changing this will make it impossible to authen-
ticate with any existing user.

13.1. System configuration 189



Vidispine REST APl Documentation, Release 4.2.2

Default MD5

ldapAuthentication
If set to true, LDAP authenticated will be enabled.

Default false

userTokenMaxInterval
Maximum token time for token created by regular user, in seconds.

Default 60
Since 4.2.2

userTokenDefaultInterval
Default token expiration time, in seconds.

Default 60
Since 4.2.2

userTokenRefreshInterval
Minimum time between token refreshments, in seconds.

Default 10
Since 4.2.2

Jobs and imports

concurrentJobs
Number of jobs that are allowed to be started.

Default 3

jobRetryCount
Number of retries for a job step before job continues with next step.

Default 5

jobExclusiveStepMaxWait
The maximum number of seconds that a job step will wait before executing if there’s a job step running from
another job for the same item or file. This exists to reduce the number of optimistic locking exceptions for job
steps that are known to conflict.

Only applies to steps with the exclusive flag (0x0100000) set.
Default 1
Since 4.2.11

defaultIngestStorage
The default destination storage for imports and transcodes. Note that storages selected by storage rules will take
priority over this.

Example vX-1

parseFileMetadata
If set to true, file metadata will be metadata parsed and inserted as [/tem metadata. Supported formats for this
type of metadata include Office formats and PDF files.

Default false

parseXMP
If set to true, XMP metadata will be parsed and inserted as Ifem metadata.

190 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

Default false

xmpIgnoreElements
Contains comma-separated list of elements that are not read when parsing XMP data.

Default DocumentAncestors, Pantry,History
Since 4.0.10

simpleImageProcessor
If false, use ImageMagick (must be installed, see Using ImageMagick for image handling
(http://vidispine.tenderapp.com/kb/installation/using-imagemagick-for-image-handling)). Otherwise, use
built-in image handling.

Default true

disableThumbnailGeneration
Will disable thumbnail generation by default. Can be overridden on a per job basis.

Default false
Since 4.0.3

alwaysGenerateThumbnails
When t rue, thumbnails will be generated on import even if no transcoding takes place.

Default false
Since 4.0.3

mediaCheckInterval
The retry interval of media check (seconds).

Default 3
Since 4.1

Storage and file

keepMissingFiles
If set to false then missing files that do not belong to any items will be removed from the database instead of
being marked as lost.

Can be overridden on a per storage basis using the keepMissingFiles storage metadata property.
Default false
Since 4.1

keepEmptyDirectories
Do not delete empty parent directories when deleting the last file in a directory, see Parent directory manage-
ment.

Can be overridden on a per storage basis using the keepEmptyDirectories storage metadata property.
Default false
Since 4.2.5

fileHashAlgorithm
Hashing algorithm used. If changed, the c_hash column of the t _£f1i1e table should probably be set to NULL.

Example SHA-1

13.1. System configuration 191


http://vidispine.tenderapp.com/kb/installation/using-imagemagick-for-image-handling

Vidispine REST APl Documentation, Release 4.2.2

enableTranscoderHashing
Off-load file hash calculation available transcoder.

Default false
Since 4.2.4

fileTempKeyDuration
Number of minutes a no-auth URI is valid (Auto method types).

Example 10

useS3Proxy
When t rue, Vidispine will create S3 pre-signed URLSs for reading during job.

Example false
Since 4.1

s3ProxyValidTime
The validate time (in minutes) of S3 pre-signed URL.

Example 60
Since 4.1

s3ConcurrentParts
The number of threads used for each S3 file upload.

Default 1

s3PartSize
The S3 chunk/part size. Note that multipart uploads are always performed regardless of file size.

Default 5242880

s3ConnectionTimeout
The timeout (in milliseconds) when establishing a connection to S3.

Default 50000

s3SocketTimeout
The timeout (in milliseconds) when reading from a connection to S3.

Default 50000

s3MaxErrorRetry
The maximum number of times to retry a failed S3 request.

Default 3

useAzureProxy
When t rue, Vidispine will create AZURE-SAS URLs for reading during job.

Example false
Since 4.1

azureSasValidTime
Specifies for how many minutes an AZURE-SAS URI will be valid. See Get status of file in storage.

Example 60
Since 4.0.1

192 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

stornextFileMetadata
Specifies which fields that should be stored on the Vidispine file entity from StorNext metadata. See StorNext
Metadata.

Default 1ocation,class,existingCopies, targetCopies
Since 4.2.3

useSegmentFiles
If true, files generated by the transcoder on storages that do not support partial modification are written as seg-
ment files on the storage, instead of local files on the application server. See Temporary storages for transcoder
output.

Default false
Since 4.2.3

Archival

trustArchivedFiles
A file needs to have a replica (another file with the same hash) before it can be removed by the storage rules.

If set to true, then archived files will be treated as valid replicas.

Default false

File system

Tip: Since 4.1.1, several of the stat system calls that was made by the JRE has been migrated into call in the JNI
code. This can be enabled using the 1ocalFSTimeData option. On systems where local file systems are sensitive

to stat loads, it is recommended to enable this option, and possibly the stat sPerSecond option.

fileHierarchy
See Using a tree structure for files.

Example 0

thumbnailHierarchy
See Using a tree structure for thumbnails.

Example 0

Warning: Changing this property will cause old thumbnails to be lost. If you need to change the value
on a system in production, please contact Vidispine.

statsPerSecond
Limit the total number of stats done on local file system. See also per-storage metadata ( Storages).

Since 4.1.1

localFSTimeData
Use JNI methods for retrieving file modification time. See below.

Default false

firstLastModifiedAsCreationTime
Use the first reading of modification time as the creation time. Can be used on file systems which do not have
the notion of creation time.

13.1. System configuration 193



Vidispine REST APl Documentation, Release 4.2.2

Default false

disableATime
Do not record atime. Used in conjunction with localFSTimeData.

Default false
Since 4.2.5

Transfers
signiantManagerHost
Hostname of Signiant manager. See Signiant Integration

signiantManagerUser
Username for Signiant manager. See Signiant Integration

signiantManagerPassword
Password for Signiant manager. See Signiant Integration

enableTranscoderTransfer
Off-load file-to-file transfers of non-growing files to available transcoder.

Default false
Since 4.2.4

Library
libraryUpdateInterval
Default library update interval in the system (seconds).
Default 60
Since 4.1

libraryExpireTime
Default library expire time in the system (seconds).

Default 86400
Since 4.1

useLucene
If Lucene should be used directly when updating auto-refreshing libraries. This is faster than using Solr when
there are a large amount of auto-refreshing libraries, but only works with the default Solr configuration that is
shipped with Vidispine.

Default false
Since 4.0

Growing files
fileGrowingTimeout
The max time a file can keep growing (seconds).
Default 36000
Since 4.1

194 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

fileNotGrowingTimeout
A file is considered as not growing if it has not been changed during this period (seconds).

Default 600
Since 4.1

Services
itemDeleteInterval
The running interval (seconds) of ITtemDeleteCruncher during the “idle” period (no item to delete).
Default 60
Since 4.1

itemDeleteIntervalShort
The running interval (seconds) of ItemDeleteCruncher during the “busy” period (there are items to be
deleted).

Default 5
Since 4.1

itemDeleteExecutionTime
Max running time (seconds) of ITtemDeleteCruncher thread, after that it goes to sleep.

Default 5
Since 4.1

fileHashExecutionTime
Max running time (seconds) of a file hashing thread, after that it goes to sleep.

Default 10
Since 4.1

Broker

compressDocumentMessages
If IMS messages containing XML should be compressed or not. If true then the JIMS_SUN_COMPRESS
(http://docs.oracle.com/cd/E19798-01/821-1796/aeqdf/index.html) property will be set on JMS messages so that
compression/decompression is performed by the OpenMQ client.

Works only with OpenMQ.
Since 4.2.2

Default true

Database management

auditTrailPurgingTime
Remove all audit trail entries older than the specified time (in minutes) and put them in XML format in files
inside the directory described by auditTrailPurgingDirectory. See Audit trail table.

Since 4.2.4

Default not set

13.1. System configuration 195


http://docs.oracle.com/cd/E19798-01/821-1796/aeqdf/index.html

Vidispine REST APl Documentation, Release 4.2.2

auditTrailPurgingDirectory
Since 4.2.4
Default not set

changelLogPurgingTime
Remove all processed change-log entries older than the specified time (in minutes). See Change-log table.

Since 4.2.4
Default not set

changelogForcePurgingTime
Remove all change-log entries (processed or unprocessed) older than the specified time (in minutes).

Since 4.2.4
Default not set

jobPurgingTime
Remove all job entries older than the specified time (in minutes) and put them in XML format in files inside the
directory described by jobPurgingDirectory. See Job table.

Since 4.3

Default not set
jobPurgingDirectory

Since 4.3

Default not set

Transcoding

maxTranscoderUnavailableTime
When a transcoding job has started, and transcoder connection becomes available, wait for this time (seconds)
for connection to be restored until job fails.

Since 4.4.1
Default 60 seconds

bulkyMetadataKeysToIgnore
Comma-separated list of bulky metadata keys to ignore from analysis results, e.g. crop,

Since 4.4.1
Default (none)

transcoderNonblockingStatusInterval
How frequently the transcode progress of a job will be updated, in milliseconds. A lower number may give a
better user experience, but also a higher number of writes to the database.

Since 4.4.1
Default 5000

13.1.6 System properties

System properties are set as argument to the JVM. In GlassFish, this is done in the admin console:

Configuration — server-config — JVM Settings — JVM Options — Add JVM Option

196 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

The following properties are used in Vidispine:

com.vidispine.site
The site id prefix for the current site.

Default vX

com.vidispine.license.dir
The directory containing the Vidispine license or slave license file.

Default ${com.sun.aas.instanceRoot}
Since 4.3

com.vidispine.license.tmpdir
The directory where temporary license files may be stored.

Default ${com.sun.aas.instanceRoot}
Since 4.3

com.vidispine.credentials.dir
The directory containing credentials files such as the AwsCredentials.properties file used with Ama-
zon S3 and Glacier.

Default ${com.sun.aas.instanceRoot}
Since 4.3

com.vidispine.log.dir
The directory containing the server log files.

Default ${com.sun.aas.instanceRoot}/logs
Since 4.3

vidispine.identifier.format
If full, output Long identifiers.

Default Normal, short identifiers.

13.2 External identifiers

External ids can be set on entities to provide an alternate way of accessing them. For example, instead of using the id
VX-100 to access a particular storage, a custom external id such as example_storage can be used.

An external id is defined as the triple (entity type, namespace, value) and must be unique. The namespace is defined
as the tuple (name, regular expression), where the regular expression is used to determine which namespace a given
external id belongs to. It is therefore preferred that the set of possible values of a regular expression for a namespace
is disjoint from the set of values for another namespace. Further note that set of values must also be disjoint from any
ids generated by the system.

Managed namespaces using the namespace resource.

13.2.1 Priority

If the sets of possible values for all namespaces are disjoint, then no conflict exists. However, if they do have values in
common there is an ambiguity regarding which namespace a particular value belongs to. This ambiguity is solved by
that all namespaces have a priority value. Upon retrieving the namespaces they will be sorted in ascending ordering

13.2. External identifiers 197



Vidispine REST APl Documentation, Release 4.2.2

according to the priority value (thus making a namespace with a smaller value more important than a namespace with
a larger value).

Example

Given two namespaces, N1, matching alphanumeric strings, and N2, matching all strings, with N1 being more impor-
tant than N2, then N1 will always match alphanumeric strings and N2 will match all other strings.

Namespace | Pattern Priority
N1 [a—zA-Z0-9]1+ | 5
N2 — 10

If the priority values were reversed so that N2 had the smaller priority value, it would match all strings and N1 would
match no strings.

13.2.2 Example: The UUID namespace

In this example we will create a namespace for UUIDs and assign a UUID as an external identifier for an item.
First we create the namespace and simply name it “uuid”.

PUT /external-id/uuid
Content-Type: application/xml

<ExternalldentifierNamespaceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pattern>[A-Fa-f0-9] {8}\-[A-Fa-f0-9] {4}\-[A-Fa-f0-9]{4}\-[A-Fa-f0-9]{4}\-[A-Fa-f0-9] {12} </patter:
<priority>10</priority>

</ExternalldentifierNamespaceDocument>

Then we assign a UUID to the item VX-11.

PUT /item/VX-1ll/external-id/69e436fe-eaed-4061-a66b-7d7c4b£f80b20

Retrieving the definition:

GET /item/69e436fe—ecaed-4061-a66b-7d7c4bf80b20/external-id

<ExternalIdentifierListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>
<entityId>VX-11</entityId>
<entityType>Item</entityType>
<namespace>uuid</namespace>
<externallId>69e436fe-ecaed-4061-a66b-7d7c4bf80b20</externalId>
</id>
</ExternalIldentifierListDocument>

13.3 License handling

Vidispine requires a valid license in order to run. The license controls how many items and storages may exist in the
system, and controls which encoders and decoders are available when transcoding.

License keys can be obtained here: http://www.vidispine.com/license

198 Chapter 13. Configuration and Integration


http://www.vidispine.com/license

Vidispine REST APl Documentation, Release 4.2.2

13.3.1 How it works

The license is a physical file which must reside in the Java application server domain folder. The file is either called
License.licor slaveAuth.lic depending on if the licensing is standalone/master or a slave setup.

The Vidispine license is tied to your systems MAC address(es) (http://en.wikipedia.org/wiki/Mac_address). For
Cloud-based systems with non-persistent MAC-address allocation (such as Microsoft Azure), a master-slave license
setup can be used to ensure proper licensing of a Cloud based Vidispine instance.

Standalone Vidispine transcoder nodes are licensed through the API and do not need a local license file.

License types
Development/test/demo license This type of license allows for unlimited numbers of everything, for a certain period
of time. All transcoded content will be watermarked.

Production license This type of license will allow for a certain number of users, assets, storages, transcoders and
codecs according to what’s purchased. Transcoded content will not be watermarked.

Deployment license When installing Vidispine using the installer, a non-MAC bound deployment license will be
installed. This license will allow you to verify that your system was properly installed. The license will allow
for 2 users, 100 assets, 1 transcoder, 1 storage area, and encoding/decoding of all codecs supported by Vidispine.
All transcoded content will be watermarked.

License errors

If the license file is missing or if you have exceeded the license limits, a HTTP response 402 Payment Required
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3) will be returned. Details on what limit(s) have
been exceeded can be found from GET /version.

The response will also display the version numbers for the various installed Vidispine components.

13.3.2 Master-slave licensing

License Master Hosted Licence Master

VS

(Also called Cloud licensing)

13.3. License handling 199


http://en.wikipedia.org/wiki/Mac_address
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3

Vidispine REST APl Documentation, Release 4.2.2

This license model was introduced in order to license Vidispine instances running in environments with non-persistent
MAC-address allocation, such as on virtual hosts, Microsoft Azure etc. The model allows you to set up your own
license master to sublicense your Vidispine instances, i.e. slaves. Vidispine also offers a hosted master license service
for such environments.

Note: The terms master and slave only refer to how the licensing is policed and has no relation to the actual role of
your Vidispine instance.

Vidispine hosted license service

Vidispine offers a redundant online master license service for licensing of Vidispine systems in environments
with non-persistent MAC-addresses. All you need is a slaveAuth.lic file for your server - contact us at li-
cense @vidispine.com for further information.

Connection to Vidispine master license service

The connection to the Vidispine master license service is done via HTTP and is tolerant to temporary error and outages.

If your infrastructure does not allow outbound HTTP connections, a proxy service can be used see
slaveLicenseProxy. (Newin4.2.5))

Configure your own master-slave setup

In order to set up your own license master, the master node(s) must reside on a server with a persistent MAC-address.
You need the following files:
1. A master license key (License. lic) to license your master node.

2. A slave license key (S1lave.lic) to be installed on your master node (via the API) in order to allow slaves to
connect to the master.

3. A slave connection string file (slaveAuth.1lic) on the slave node(s) in order for the slave(s) to find the
master.

The master and slave licenses are paired together by the property MasterIdentifier, which needs to be
equal in both files. The slave license and the slave connection string files are paired together by the property
SlavelIdentifier, which needs to be identical in both files.

Your master node needs to run the full Vidispine middleware (API) to enable the license master service.

Contact us at license @vidispine.com to obtain a master & slave license key pair.

Install master license on master node

Copy the master license key License. 1ic to your Java application server domain root folder on the master node.
License validity and status can be seen in the response from GET /version.

Install slave license on master node

Copy the slave license key Slave.lic (corresponding to the master key) to a convenient location on the master

node, such as the Java application server domain root folder (do not rename the slave license file to License.lic,
as this will overwrite the master node license file).

200 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

Make a PUT /license/slave request on the master node to install the slave license:.

Example

Using GlassFish, if the slave license is called S1ave . 1lic and is located in the domain root, the request should be:

$ curl -X PUT -uadmin:admin http://localhost:8080/API/license/slave?path=Slave.lic

Install slave connection string file on slave (manual)
Create a file named slaveAuth. lic containing the SlaveIdentifier and [P-numbers of your master node(s).
Copy the file to your Java application server domain root folder on the slave node.

The SlaveIdentifier property value must be equal to the SlaveIdentifier value in your slave license key
installed on the master. The MasterIP property value must equal the IP numbers or DNS addresses of your master
node(s).

Example

Slaveldentifier=your-slave-id
MasterIP=http://192.168.0.1:8080/, http://my.other.server:8080/

Multiple IPs (comma separated) are supported for redundancy. A slave will automatically fail over to the secondary
master if the primary master goes down, and vice versa.

License validity and status can be seen from GET /version.

Install or update slave connection string (via the API)

The slave connection string can also be installed using PUT /APInoauth/license/auth-info. For example:

PUT /APInocauth/license/auth-info
Content-Type: application/xml

<SlaveAuthInfoDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<masterHost>http://192.168.0.1:8080/</masterHost>
<masterHost>http://my.other.server:8080/</masterHost>
<slaveId>your—-slave-id</slaveId>

</SlaveAuthInfoDocument>

License validity and status can be seen from GET /version.

13.3.3 Slave management and monitoring

See Slave management and monitoring on how to manage and monitor the connected slaves.

13.3.4 Redundancy and timeouts

A heartbeat request is performed from the slaves towards the master every 60 seconds. A slave will automatically fail
over to the secondary master if the primary master goes down, and vice versa. If the slave does not receive a valid
license from any master within 180 minutes, the slave goes into read-only-mode and it’s entry will be deleted from

13.3. License handling 201



Vidispine REST APl Documentation, Release 4.2.2

the list of slaves on the masters. A request to GET /version on the slave will report “License status invalid”. The
slave will go back to normal operation as soon as any of the masters become available again.

13.4 Using JavaScript to extend operations

JavaScript can be used to add integration code in a number of places, such as job tasks, transcode presets, naming
scripts, etc. This article describes functions and utilities that are common to all JavaScript invocations.

If a script is not working as expected, then it is also possible to debug the script using Eclipse.

13.4.1 Common JavaScript functions

A number of global variables are defined for the script to use. It is also possible to add custom global JavaScript
objects and functions, as described in Add generic JavaScript code.

The api object

The api object can be used to perform a synchronous HTTP request to the Vidispine API. By default the request will
be performed as the user that created the job that is running, unless overridden by the script using the api .user ()
function.

These functions all return a new api object with the parameters of the function added to it, and should thus be chained
as shown in the example below.

api.path (path)
Adds the given path to the API URIL.

api.queryParam (key, value)
Adds a query parameter to the API URL

api.dataType (fype)
The type of data that should be returned from the server.

Arguments

* type (string) — Supported types are text, json and xml, or a media type such as
application/ json. The defaultis json, xml.

api.input (input[, lype])
The data to be sent. The content type is optional if the input is a JavaScript or XML object, but mandatory if
input is a string (such as a JSON or a XML string).

Arguments

* type (string) — Supported types are text, json and xml, or a media type such as
application/json.

api.user (username[, password] )
The user to authenticate as. If no password is specified then the request will be authenticated using token
authentication.

api.timeout (timeout)
Sets the timeout of the request.

Arguments

* timeout (inf) — The timeout in milliseconds.

202 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

New in version 4.0.3.
Once the request parameters have been specified the request can be performed using one of these four functions:

api.get ()
Performs a GET request.

api.put ()
Performs a PUT request.

api.post ()
Performs a POST request.

api.delete ()
Performs a DELETE request.

For example, to retrieve the metadata and shapes for a specific item:

item = api.path("item") .path(itemId)
.queryParam("content", "metadata, shape")
.get ()

Rich output

By adding rich () on the api chain, more information about the HTTP response is given. Without rich, the
operation functions (api.get () etal.) only return the value returned by the API, and throws an exception if the API
returns an error.

api.rich()
With rich, the functions returns a JavaScript object, with the following properties:

eoutput - The response, parsed as an object.
eresponse - The response as a string.
estatus - The HTTP status code.

ehttpheader—-+ - The various HTTP headers, with the HTTP header name in lower case, e.g.
httpheader-content-length.

New in version 4.0.3.

API call information

To aid in troubleshooting API calls, this function can be used to get information about the call that is about to be made.

api.getInfo ()
New in version 4.0.3.

Returns
A JavaScript object with properties:
* uri - The URI of the request.

* queryParams - A javax.ws.rs.core.MultivaluedMap containing all of the
query parameters.

* inputIsXML - True if the input is an XML object.

* inputIsJSON - True if the input is a JSON object.

13.4. Using JavaScript to extend operations 203



Vidispine REST APl Documentation, Release 4.2.2

* returnTypes - The media types that have been set using api .dataType ().
* user - The name of the user performing the request.

* passwordIsSet - True if the password has been set.

The http object

New in version 4.0.3.

The http object is similar to the api object, but can be used to invoke other HTTP resources. The http object
needs to be used with the http.uri () function, which takes one parameter, the URI to be used.

http.uri(uri) : ()
Arguments

* uri (string) — The URI of the resource.

Example:
var uri = api.path(’version’).getInfo() .uri;
http.uri(uri) .user (’admin’,’admin’) .dataType (' JSON’) .get () .licenseInfo.licenceType

The shell object

The shell object is used to invoke shell commands.

shell.exec (command[, arg, ... ] [, options] )
Executes the command with the given arguments.

Arguments
e command (string) — The name of the command to execute.
* arg (string) — Any arguments to pass to the command.
* options — A JavaScript object with fields:
— timeout - An optional timeout in milliseconds.
— input - Optional input to send to standard input.

— output - Optional java.io.OutputStream to contain the output from the com-
mand. If this field is specified then output will not be included in the response.

— err - Optional java.io.OutputStream to contain the error output from the com-
mand. If this field is specified then output will not be included in the response.

Returns
An object with fields:
* exitcode - The return code (an integer) from the command.
* output - Standard output as a string.
* err - Standard error as a string.

A step that checks a file for viruses might for example look something like:

204 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

var file = ...
var result = shell.exec("clamscan", file);
if (result.exitcode == 1) {

job.failFatal ("Virus (es) found");
}

The logger object

New in version 4.0.3.

The 1ogger object outputs information to the log file of the application server. If the JavaScript object is concatenated
to a string, the full representation may not be shown.

logger.log(’information is ’'+info);

This can be fixed by using the 1ogger. json () function:
logger.log(’information is ’+logger.json(info));
logger.log (message)
Logs the given message to the application server log file.
Arguments

* message — The message to log. If this is a JavaScript object then it will automatically be
transformed into JSON format.

logger. json (object)
Converts the given JavaScript object into JSON.

13.4.2 Debugging JavaScript

New in version 4.0.3.

The JavaScript code can be debugged using Eclipse. The configuration property debugJavaScript controls if
debugging is enabled or not. With this setting set to t rue, all JavaScript code will wait for a remote debugger to
attach before continuing.

1. Enable JavaScript debugging. Set the configuration property debugJavaScript to true.

3. Set up Eclipse. To set up Eclipse for debugging, select Run — Debug Configurations... and create a new
Remote JavaScript configuration. Use Mozilla Rhino as Connection, and port 59000. The port can be changed
using the configuration property debugJdavaScriptPort.

For Source Lookup Path, select a File System Directory, and point it to any existing directory. The directory
does not have to contain the source files; it will be sent via the Mozilla Rhino connector.

3. Execute a script. Now, Eclipse is ready to connect. To test, POST
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5) some JavaScript code to
API/javascript/test, e.g. using curl:

$ curl -uadmin:admin -Hcontent-type:application/javascript \
localhost:8080/API/javascript/test —-X POST --data-binary \
"var a=3;

var b=4;

atb;’

If debugJavaScript is true, then the call will not return immediately.

13.4. Using JavaScript to extend operations 205


http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

Vidispine REST APl Documentation, Release 4.2.2

4. Connect the debugger. In Eclipse, choose Run — Debug Configurations..., select the created configuration and
choose Debug.

Eclipse should show a file named testscript—-xxxx. s or similar in the source window. The first line
includes the text debugger; . This is intentional and can be ignored; it is only added so that the debugger will
actually start in suspended mode.

Also, when the script starts, a random line — typically the second or third — is selected. Single-step once and
the first line should be selected and the actual debugging can start. After the script has completed, the API call
returns.

13.4.3 Interfacing with the JavaScript engine manually

New in version 4.0.3.

In order to test functionality, the JavaScript engine can be called manually. For more information, see JavaScript.

13.4.4 Add generic JavaScript code

In order to avoid redundant code, it is possible to register JavaScript code in a “global library”. This is done using
configuration properties of the form javascript-{extension}, where extension is any suffix.

When doing this, all code that is in the javascript— properties will be executed before the specific code. Multiple
properties can be added, and will be parsed in lexical order. It is advised that only definitions (function) are made,
and not direct statements, in order to avoid confusion.

Example

$ curl -uadmin:admin —-Hcontent-type:text/plain \
localhost:8080/API/configuration/properties/javascript-1234 -X PUT --data-binary \
"function add(a,b) {

return a+b;
}V
$ curl -uadmin:admin —-Hcontent-type:application/javascript \
localhost:8080/API/javascript/test —-X POST --data-binary \
"var a=3;
var b=4;
add(a,b);’

13.5 Archive Integration

Vidispine has no built in integration with any archive vendors. It is however possible to write your own integration
scripts which Vidispine will then invoke when a file is to be archived.

13.5.1 Creating an archive storage

In order to get a working integration with an external archive, a special storage must be created with type ARCHIVE.
For this integration to work, a script must be associated with the storage (described below).

206 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

Example

Creating an ARCHIVE storage:

POST /storage

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>ARCHIVE</type>
<capacity>1000000000</capacity>
<archiveScript><! [CDATA[

] ]></archiveScript>
</StorageDocument>

Integrating with an archive using JavaScript

To enable integration, a JavaScript must be written which will perform the actual archive operation. In order to be as
flexible as possible, this script can both make API calls to Vidispine (The api object), and invoke shell operations (7he
shell object).

The script also has access to a £i1e object. This object has the following functions defined:

file.getMetadata (key)
If the specified metadata key is set on the file, the value is returned, otherwise null.

file.setMetadata (key, value)
Sets the specified key-value pair as metadata on the file.

file.getAllMetadata ()
Returns a map of all file metadata.

The script must as its last assignment define an object with the following properties:
* archive - A function invoked when an archive is to be performed.
* restore - A function invoked when a restore is to be performed.
* remove - A function invoked when a delete is to be performed.

e restorePartial - A function invoked when a partial restore is to be performed. This function is optional.
If it is missing and a partial restore is requested, the restore function will be invoked.

Example

A simple archive script. This script only performs file system copies and removes.

function getFilePath (url) {

if (url.indexOf (' file:///") === 0) {
url = url.substring(7);

}

if (url.indexOf (' file:/’) === 0) {

url = url.substring(5);

}

if (url.indexOf (' /C:/") === 0) {
url = url.substring(l);

}

return url;

13.5. Archive Integration 207



Vidispine REST APl Documentation, Release 4.2.2

o= {
"archive": function (uri, id, data) {
var archivePath = getFilePath(data.archiveDir);
var path = getFilePath (uri);
var filename = uri.substring(uri.lastIndexOf(’/’)+1);

logger.log (' Running command "cp ’+path+’ ’+archivePath);

var result = shell.exec(’cp’, path, archivePath);
if (result.exitcode > 0) {

throw "Failed to copy file to archive: "+result.err;
} else {

file.setMetadata (’uri’, archivePath+filename);
}
}I
"restore": function (uri, id, data) {
var path = getFilePath (uri);
var loc = getFilePath(file.getMetadata (‘uri’));

logger.log (' Running command "cp ’+loc+’ ’+path);

var result = shell.exec(’cp’, loc, path);
if (result.exitcode > 0) {
throw "Failed to copy file from archive: "+result.err;
}
}I
"remove": function(id, data) {

var loc = getFilePath(file.getMetadata ('uri’));
logger.log (’Running command "rm ’+loc);

var result = shell.exec('rm’, loc);
if (result.exitcode > 0) {
throw "Failed to remove file: "+result.err;

}i

13.5.2 Amazon Glacier

New in version 4.1.1.
Vidispine can archive files on Amazon Glacier. There are two different ways this can be achieved:
* Creating a separate Glacier storage and move files from other storages there for archival.

» Using an S3 storage and transition objects to the Glacier storage class.

Creating a dedicated Glacier storage

To create a storage used solely for Glacier archiving, you need to create a storage with an XML document like this:

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>ARCHIVE</type>
<bean>GlacierBean</bean>
<capacity>100000000000000</capacity>
<metadata>

208 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

<field>
<key>glacierVaultName</key>
<value>{vault name}</value>

</field>

<field>
<key>glacierEndpoint</key>
<value>https://glacier.us-east-1.amazonaws.com/</value>

</field>

</metadata>
</StorageDocument>

Files can then be moved to this storage either using storage rules or by initiating a copy job (Create a file move/copy
Jjob). Restore jobs must be initiated using storage rules.

Note that restore jobs typically take several hours, and the restore job will be put in the WAITING state while the
restore initiation is in progress. This is to allow other jobs to run during this time.

Transitioning files From S3 to Glacier

There is no way, using the AWS SDK, to directly initiate a transition to the Glacier storage class for a single object. In-
stead, Object Lifecycle Management (http://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html)
must be used. Vidispine will automatically detect when a transition to the Glacier class has happened, and put the file
in the ARCHIVED state.

To restore a file so that it can be read directly, you can use the following request

PUT /storage/ (storage-id) /£ile/
file-id/ restore

Query Parameters
* extraData — expirationInDays={number-of-days}

This will cause Vidispine to ask Glacier to initiate a restore. Once the restore is complete, the file will be put in the
CLOSED state, and it is available for direct access.

The extraData parameter can be used to specify that the restored files should be available for a limited time, in
this example for five days. Once it has expired, it will be removed from direct access and once again end up in the
ARCHIVED state. If no value is provided, a default of -1 will be used.

13.5.3 Front Porch Diva Integration

New in version 4.1.

Requirements

 StoragePlugin.jar

Installation

Deploy StoragePlugin.jar in GlassFish:
* Open the web administration console.
* Navigate to Applications.

* Click Deploy... and select the StoragePlugin.jar file.

13.5. Archive Integration 209


http://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Vidispine REST APl Documentation, Release 4.2.2

¢ Make sure that Type is set to EJB Jar and that Compatibility is selected.
¢ Click OK.

Configuration

Set up a shared folder which is accessible by both Vidispine and DIVarchive manager.
POST the following document to /API/storage

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>ARCHIVE</type>

<capacity>1000000000000</capacity>

<bean>DIVABean</bean>

<metadata>
<field>
<!-- SSH host ——>
<!-- this is the hostname of the DIVA SSH service —-->

<key>hostname</key>
<value>187.47.11.109</value>

</field>
<field>
<!-- SSH username -->
<!-- this is the username for the DIVA SSH service —-->

<key>username</key>
<value>diva</value>
</field>
<field>

<!-- SSH password ——->
<key>password</key>
<value>diva</value>

</field>
<field>

<!-- SSH port —-—>

<key>port</key>

<value>22</value>
</field>
<field>

<!-— path to the shared folder on vidispine server ——>

<key>storagePath</key>
<value>/shared/storage/</value>
</field>
<field>

<!-- hostname or IP address for the DIVA manager —-—>
<key>DIVAHostname</key>

<value>187.47.11.109</value>

</field>
<field>

<!-— TCP port for the DIVA manager ——>

<key>DIVAPort</key>

<value>9065</value>
</field>
<field>

<!-— Media name designates either a group of tape, or an array of disk

declared in the configuration where the instance has to be created. —-->

<key>DIVAMediaName</key>
<value>default</value>

210 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

</field>
<field>

<!-- category --—>
<key>DIVACategory</key>
<value>default</value>
</field>
<field>

<!-- restore is not yet implemented —->
<key>DIVARestoreDestination</key>
<value></value>
</field>
<field>

<!-- path to shared folder on DIVA server ——>
<key>DIVAFilePathRoot</key>
<value>C:/shared/storage/</value>

</field>
<field>
<!—-- The value of this option is the name of the source/destination to be used
by the specified command: archive, restore, copy... This server name
must be a valid name as configured in the DIVA system. ——>

<key>DIVAServerName</key>
<value>disk</value>
</field>
</metadata>

<method>
<uri>file:///shared/storage/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
</method>
</StorageDocument>

Usage

To archive a file, copy it to the shared folder and wait for Vidispine to detect its presence. Once Vidispine has found
the file, import it to trigger archiving.

Example using curl:

curl -X POST -uadmin:admin ’"http://localhost:8080/API/storage/VX-4/file/VX-1/import’ -Hcontent-type::

Archiving should begin shortly.

13.6 S3 Event Notifications

New in version 4.4.

Vidispine supports polling Amazon SQS for S3 events, to detected changes on the Amazon bucket. This makes it less
expensive to detect file changes on S3 buckets.

13.6. S3 Event Notifications 211



Vidispine REST APl Documentation, Release 4.2.2

13.6.1 Configure S3 notifications

1. Create an Amazon SQS queue. You could create the queue from either the AWS Management Console
(http://console.aws.amazon.com/) or using the SQS SDK. Make sure that the S3 bucket is allowed to send
messages to the queue, for example, using a policy like:

"Version": "2012-10-17",
"Statement": [

{

"Sid": "l",
"Effect": "Allow",
"Principal”: {
"AWS n . n * n
b
"Action": [
"qu % n
1,
"Resource": [

"arn:aws:sgs:eu-west-1:12121221212:exampleQueue"
]I
"Condition": {
"ArnLike": {
"aws:SourceArn": [
"arn:aws:s3:*:x:bucketname"

]

Note:

» Use one queue per bucket. Don’t send events from multiple buckets to the same queue, as this is not supported
by Vidispine.

* Vidispine will connect to the queue using the credentials from the S3 method URI, so that user must have access
to both the bucket and SQS queue.

2. Configure the S3 bucket to send ObjectCreated:* and ObjectRemoved.:* events to SQS. The notifications can be
set up from the S3 bucket properties in the AWS Management Console, or using the S3 SDK.

13.6.2 Configure the storage

1. To have Vidispine poll a SQS queue instead of scanning a S3 bucket, set the storage method metadata sgsName
and sgsEndpoint to enable this feature:

PUT /storage/VX-1/method/VX-2/metadata/sgsName
Content-Type: text/plain

s3-event-queue

PUT /storage/VX-1/method/VX-2/metadata/sgsEndpoint
Content-Type: text/plain

sgs.eu-west-1.amazonaws.com

212 Chapter 13. Configuration and Integration


http://console.aws.amazon.com/

Vidispine REST APl Documentation, Release 4.2.2

GET /storage/VX-1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<method>
<uri>s3://bucketname/</uri>
<metadata>
<field>
<key>sgsName</key>
<value>s3-event-queue</value>
</field>
<field>
<key>sgsEndpoint</key>
<value>sgs.eu-west—-1.amazonaws.com</value>
</field>
</metadata>
</method>

</StorageDocument>

. Then make sure that the storage metadata refreshOnStart is t rue (this is the default).

Due to the distributed nature of Amazon SQS, the messages come unordered
(http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/DistributedQueues.html).
On every start up, Vidispine will need to purge the queue and do a full scan of the storage, to sync the file list
with database.

. You can then set the storage to be scanned less often by setting ma jorCheckTime to a larger number than
default, for example 1 hour.

Every majorCheckTime, Vidispine will perform a full scan, as a precaution of any possible inconsistency.

You can check the storage method status (Last Success, lastFailure, failureMessage) to determine if the
configuration is correct or not. For example, if a non-existing queue is specified:

<failureMessage>
Error polling SQS: The specified queue does not exist for this wsdl version. (...)
</failureMessage>

13.7 Signiant Integration

Vidispine can initiate transfers between storages using Signiant. Some configuration is needed in order for this to
work. Once all required configuration is set, Signiant will automatically be used for transfers between configured
storages.

13.7.1 General system configuration

The following configuration properties must be set:

signiantManagerHost The hostname of the Signiant manager.

signiantManagerUser The manager username.

signiantManagerPassword The manager password.

13.7. Signiant Integration 213


http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/DistributedQueues.html

Vidispine REST APl Documentation, Release 4.2.2

13.7.2 Storage configuration

The following metadata field must be set on the source and destination storage (Key-value metadata).
signiantAgent

The name of the agent connected to this storage. This can also be set to an agent group using the format
<group_name>!<organization_number>.

Storage methods

Each Signiant enabled storage needs a file:/ storage method. This will be used to determine the source and
destination paths for transfers.

13.8 Aspera Integration

Vidispine can initiate transfers between storages using Aspera. For this to work, the source and destination storages
must first be configured properly.

I Storage I ’ | Storage I

13.8.1 Source storage configuration

The following metadata fields must be set on the storage (Key-value metadata).
asperaRootPath The absolute path to the storage root
Example /usr/local/aspera-storage/
asperaWsdlLocation The URL to the FIMS WSDL file for the Transfer Service
Example http://10.18.12.10:8080/FIMS/TransferService?wsdl>
asperaStatusWsdlLocation The URL to the FIMS WSDL for the Transfer Status Service.
Example http://10.18.12.10:8080/FIMS/TransferStatusService?wsdl>

If performing a transfer from this storage, and the destination is an Aspera URL, then Aspera will be used for the
transfer.

13.8.2 Destination storage configuration

asperaDestinationUri The Aspera URI corresponding to the root folder of this storage

Example fasp://10.18.12.11:22/usr/local/aspera-destination?user=username&amp; passwo:

214 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

If a transfer is initiated to this storage, and the source storage is also configured for Aspera transfer, then Aspera will
be used for the transfer.

13.9 FileCatalyst Integration

New in version 4.2.3.

Vidispine can initiate transfers between storages using FileCatalyst. For this to work, the source and/or destination
storages must first be configured properly.

I Storage I ’ | Storage I

13.9.1 Transfer type

Three different transfers are supported:
1. Transfer between two storages listed in FileCatalyst Server.
2. Transfer from a local storage (with a £i1le URI method) and a storage listed in FileCatalyst Server.

3. Transfer from a storage listed in FileCatalyst Server to a local storage.

13.9.2 Storage configuration

To specify that FileCatalyst can be used to transfer from/to a storage, a special Storage Method has to be added:

URI filecatalyst://{user}:{password}/{host}[:{port}]/{any relative path from
the FileCatalyst root}

type TRANSFER

Example

Assume that Vidispine and FileCatalyst runs on the same server, and that you want to create a storage to handle
/srv/media/incoming. Further assume that in FileCatalyst there is a user £c with password s3cret which has
is FileCatalyst home root directory at / srv/media. Further, assume that FileCatalyst is running on port 2100.

Then the storage should look like:

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<method>
<uri>file://srv/media/incoming/</uri>
<read>true</read>
<write>true</write>

13.9. FileCatalyst Integration 215



Vidispine REST APl Documentation, Release 4.2.2

<browse>true</browse>
<type>NONE</type>

</method>

<method>
<uri>filecatalyst://fc:s3cret@localhost:2100/incoming/</uri> <!/-- /srv/media + incoming = /srv/i
<type>TRANSFER</type>

</method>

</StorageDocument>

13.10 MXFserver Integration

The MXFserver plugin allows Vidispine to integrate with MXFserver. The plugin allows collections to be created in
Vidispine, representing business units, sections, modules, episodes and projects (here called entities.) Items added to
a project collection will automatically be added to the MXFserver project.

13.10.1 Set up

The plugin can also extend LDAP so that business units and sections are created for imported users.

A JDBC resource should be configured in your application server for connecting to the MXFserver MySQL
database. The databaseName element can be used to specify the JNDI name of the JDBC resource (default=
jdbc/mxfserver). Typical connection pool settings are:

General settings
Datasource Classname | com.mysqgl. jdbc. jdbc2.optional.MysglDataSource
Resource Type javax.sqgl.DataSource

Additional properties

Url jdbc:mysqgl://<mxfserver—ip-addess>:3307/systemb5
User <username>

Password | <password>

Requirements

e The MySQL JDBC driver (http://www.mysql.com/products/connector/) , installed into GlassFish
($GLASSFISH/1ib).

Installation

1. Configure the plugin by creating a MXFserver resource containing the MXFserver settings, by making a POST
request to API/resource/mxfserver containing:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<mxfserver>

<url>http://192.168.38.200:11000/mxfserver/</url>
<workspaceUrl>file:///mnt/mxfserver/</workspaceUrl>
<mxfServerWorkspacePath>C:\storage\Workspaces\</mxfServerWorkspacePath>
<mxfServerUserId>1</mxfServerUserId>
<mxfServerPathToStorage>C:\storage\Vidispine\</mxfServerPathToStorage>
<storageId>VX-1</storageId>
<db-host>192.168.38.200</db-host>

216 Chapter 13. Configuration and Integration


http://www.mysql.com/products/connector/

Vidispine REST APl Documentation, Release 4.2.2

<db-port>3307</db—-port>
<db-username>root</db-username>
<db-password>Mastermeta</db-password>
<atomShapes>atom</atomShapes>
<importShapes>hd, original</importShapes>
</mxfserver>
</ResourceDocument>

In the example above the (first) shape with the hd tag should be imported, if one exists, and the original
shape should be used otherwise.

The elements are:

mxfServerWorkspacePath The path to the workspaces directory used by MXFserver.
mxfServerUserId The Vidispine MXFserver user id.

mxfServerPathToStorage The path to the Vidispine storage st orageId as seen by MXFserver.

storageId The storage that contains the files that should be imported into MXFserver. Must be on the same
file system as the MXFserver workspaces directory.

atomShapes Should contain the tags of the shapes that contain OP-Atoms, and for which QuickTime refer-
ence files will be created.

importShapes Contains the shapes that should be considered for import into a MXFserver project, ordered

by priority.

2. Enable the plugin by setting the following configuration properties:
Property Value Note
collectionPluginBean MxfServerCommunicator
ldap.import.plugins MxfServerUserImportPlugin
ldap.attr.businessUnit | Department
ldap.attr.section UoSCourse
ldap.groupsAsFunctions | TRUE/FALSE (1)

(a) If enabled then MXFserver functions will be created with the same names as the groups found in the
directory.

3. To enable automatic import of new media added to projects, the MXFserver configuration file
Mxfserver.ini needs to be updated with:

[API_OPTIONS]
notifyNewFilesHTTPLocation=http://[Vidispine server address]/MxfServerAPI/import

13.10.2 Usage

MXFserver entities are in Vidispine simply created as collections. A number of additional parameters are required,
depending on the type of entity to create, as shown below. See Collections for more on how to manage collections.

Note that a collection will automatically be added as a child to the parent collection.
The query parameters are:
name={collection—-name} The name of the collection and MXFserver entity.

type={entity-type} The type of MXFserver entity. Either businessUnit, section, programme,
episode or project.

parent={parent—-collection-id} The id of the parent collection/entity.

13.10. MXFserver Integration 217



Vidispine REST APl Documentation, Release 4.2.2

projectType={project—type} The type of MXFserver project.

projectBaseld={project-base-id} The project template to extend.

Example

Creating the MXFserver project hierarchy.

POST /API/collection/?name=NameOfBusinessUnité&type=businessUnit
POST /API/collection/?name=NameOfSection&type=section&parent=vVx-1
POST /API/collection/?name=NameOfProgram&type=programme&parent=Vx-2
POST /API/collection/?name=NameOfEpisode&type=episode&parent=Vx-3

With a FCP (projectType=2) project based on the FCP7 template ( projectBaseId=30).

POST /API/collection/?name=NameOfProjecté&type=projecté&parent=VX-4&projectType=2&projectBaseId=30

Caution: Note that projects can be created at any level in the hierarchy. However, the MXFserver client only
allows projects to be created if an episode has been selected. An episode must also be selected before the details
of a project can be edited and saved, which if done would cause Vidispine to be out of sync with MXFserver (it’s
one way sync from VS to MXFserver only.)

13.11 EVS IP Director Integration

New in version 4.1.

It is possible to map data inside “log info” (<Log>) in a EVS metadata file to Vidispine metadata.

13.11.1 Example

Import the EVS metadata file as a sidecar file with your essence file:

POST /import?URL=/vidispine/demo.dv&sidecar=file:///path/to/evs.metadata.xml"

so a EVS metadata that looks like this:

<EVS_Metadatas Revision="1">
<General_ Infos>

</General_Infos>
<Clips_Infos>
<Clip>
<XFile Clip_Infos>

</XFile_Clip_Infos>
<Other_Clip_ Infos>

<Logs>
<Log DBVersion="0" GUID="2b9de077-8e4d-4e48-ac8f-b2cdc05b0805" Version="2.0.1">
<Date>21-Apr-2013</Date>
<TC>15:00:33:01 </TC>

218 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

<DateUser>21-Apr-2013</DateUser>
<TCUser>15:00:33:01 </TCUser>
<TCTable>1</TCTable>
<Description>Mal av:
<TapeID />
<InterestlLevel>0</InterestLevel>
<Colour>0</Colour>
<AvidColour>#000000</AvidColour>
<Keywords>

11.

Selakovic,

Stefan</Description>

<Keyword Type="Keyword">Mal</Keyword>
<Keyword Type="Keyword">HBK</Keyword>

<Keyword Type="Participant">11l.
</Keywords>
<AutomaticKeywords>
<AutomaticKeyword
<AutomaticKeyword
<AutomaticKeyword
</AutomaticKeywords>
</Log>

Description=""
Description=""
Description=""

</Other_Clip_ Infos>
</Clip>
</Clips_Infos>
</EVS_Metadatas>

will be translated to Vidispine metadata like:

<?xml version="1.0"?>

Selakovic,

Stefan</Keyword>

Header="Attendance" Type="NUMBER">4011</AutomaticKeyw
Header="Away Team" Type="TEXT">Kalmar FF<«/AutomaticKe:
Header="HalfTimeScore" Type="TEXT">1-0</AutomaticKeyw

<timespan start="1350826QPAL" end="1350851C@PAL">
<group uuid="al0c2d689-bee3-48ea-8708-5228e533382c" user="admin" timestamp="2013-11-29T11:50:21.938-

<name>EVS_Log</name>
<field uuid="2ebl92e7-1af8-4cde-9083-93e5c4c922bd"
<name>EVS_AvidColour</name>
<value uuid="2d060045-bdl1-4d17-bba2-5327d51d3ee7" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="9efabf9f-003d-437a-a459-3cl1f%a4a306e" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_Colour</name>
<value uuid="014a932c-bfc3-4a36-a209-c4£9£3389b0b" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="48323112-c06b-4ef3-855£f-550£422£5d83" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>FEVS_InterestlLevel</name>
<value uuid="264c55a3-4679-439d-ac2a-dd63£7e57b93" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="f035327f-c006-49cb-8ed3-2d4c78£d35e7"
<name>EVS_TapeID</name>
<value uuid="81lcc0f37-cf8d-4b3c-9641-a94367aad4ald"
</field>
<field uuid="bad4bc026-5900-4215-be94-515b4568379a" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_Description</name>
<value uuid="ed800484-c646-46b7-8530-e6487f2dc637"
</field>
<field uuid="3742dfeb-al00-4980-9db5-d3281342b9%a8" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_TCTable</name>
<value uuid="06490341-dael-42d7-a8la-abea7015bcb3" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="09f4af36-05f2-43f5-2063-ddc680ef18f4" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_TCUser</name>
<value uuid="5e38b2cd-3d06-4a5a-8358-b6da51a58637"

user="admin" timestamp="2013-11-29T11:50:21.9:

user="admin" timestamp="2013-11-29T11:50:21.9:

user="admin" timestamp="2013-11-29T11:50:21

user="admin" timestamp="2013-11-29T11:50:21

user="admin" timestamp="2013-11-29T11:50:21

13.11. EVS IP Director Integration

219



Vidispine REST APl Documentation, Release 4.2.2

</field>
<field uuid="48df81fc-4ba3-4ad8-847f-22521a0ae89b" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_Date</name>
<value uuid="bfc7b8el-aa98-4f32-ad50-30e899c67834" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="b397b900-d869-4457-9351-e08fb53a5670" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>FEVS_TC</name>
<value uuid="45a6e2£3-2111-45ee-aa38-4373d710bc29" user="admin" timestamp="2013-11-29T11:50:21
</field>
<field uuid="87993aa8-6c61-49c8-a834-fb73649db7b7" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_DateUser</name>
<value uuid="ea2b8cdd-4e91-4468-bbe7-00342f19%94ecd" user="admin" timestamp="2013-11-29T11:50:21
</field>
<group uuid="d6dbldl19-4bb5-41lcc-allb-faaad4leadfl3" user="admin" timestamp="2013-11-29T11:50:21.9:
<name>EVS_Keywords</name>
<field uuid="26755143-ad34-45b5-a68f-e0d6407beb5a" user="admin" timestamp="2013-11-29T11:50:21
<name>EVS_Keyword</name>
<value uuid="eb83876d-0852-4b82-912d-4468324ff5e7" user="admin" timestamp="2013-11-29T11:50:
</field>
<field uuid="1b8f7603-3623-4ae7-9b18-ac363973c2ae" user="admin" timestamp="2013-11-29T11:50:21
<name>EVS_Keyword</name>
<value uuid="812085e9-175e-44f0-a74e-b27dec67dd33" user="admin" timestamp="2013-11-29T11:50::
</field>
<field uuid="acb9a9%b6-06d1-4e9a-8838-ab7efac97b59" user="admin" timestamp="2013-11-29T11:50:21
<name>EVS_Keyword</name>
<value uuid="bd1l48e7d-£7d3-446d-8147-6af9cee23127" user="admin" timestamp="2013-11-29T11:50::
</field>
</group>
</group>
</timespan>

<timespan start="-INEF" end="+INF">
<group uuid="90cf23d4-2555-48b5-a38¢c-£284076£f8cdd" user="admin" timestamp="2013-11-29T11:50:23.783:
<name>EVS_MatchData</name>
<field uuid="868cl6d8-22cf-41d8-a2fe-bcccd221d686" user="admin" timestamp="2013-11-29T11:50:23.7
<name>EVS_HalfTimeScore</name>
<value uuid="adl2c72c-2030-41e9-81e0-7605869£501d" user="admin" timestamp="2013-11-29T11:50:23
</field>

<field uuid="374c7c03-b54c-46fe-8lea-b52eef353fc2" user="admin" timestamp="2013-11-29T11:50:23.7
<name>EVS_AwayTeam</name>
<value uuid="4082bbfd-e875-445f-9baa-beec03cbbe5e" user="admin" timestamp="2013-11-29T11:50:23
</field>
<field uuid="a9%7e745a-fcbb-42a3-b0£f2-£fc73b27ae7b9" user="admin" timestamp="2013-11-29T11:50:23.7
<name>EVS_Attendance</name>
<value uuid="el7dd5e3-£85c-4477-afcl-170cld7£3d71" user="admin" timestamp="2013-11-29T11:50:23
</field>

</group>
</timespan>

Please note that the values in <AutomaticKeyword>s will be mapped as global metadata (with timespan: (-INF,
+INF)), so it is a good place to store the metadata of the whole essence file.

220 Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

13.12 StorNext Integration

New in version 4.2.3.

In version 4.2.3, beta support for Quantum StorNext file information is added. With this support, storage information
from StorNext is added to the file information. StorNext version 5 and higher is supported, and the Web Services API
and the http protocol must be enabled.

13.12.1 Storage configuration

In order for StorNext information to be retrieved, a special Storage Method has to be added:
URI stornext://{user}:{password}/{host}:{port}/{StorNext path}
type HSM

Here, user and password are the StorNext web services API credentials. (webservice, webservice by default
on StorNext). Host and port is the StorNext endpoint (typically port 81). StorNext path is the base path prefixed to the
file path when the StorNext API is queried. Typically, this is the same path as for the £i1e method.

Example

Below is an example of a storage configuration where StorNext and Vidispine runs on the same machine, with the
StorNext filesystem on /stornext/snfs.

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<method>
<uri>file:///stornext/snfs/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
<type>NONE</type>
</method>
<method>
<uri>stornext://webservice:webservice@localhost:81/stornext/snfs/</uri>
<type>HSM</type>
</method>
</StorageDocument>

13.12.2 StorNext Metadata

When the StorNext endpoint is set up, Vidispine file archive status and metadata is updated.
* The file is marked as ARCHIVED if and only if StorNext 1ocation is exactly TAPE.

¢ The StorNext metadata fields 1location, class, existingCopies, and targetCopies are set on the
file. This can be changed by modifying the configuration property stornextFileMetadata. It should be a
comma separated list of StorNext metadata fields.

13.13 Cerify integration

The Cerify plugin allows Vidispine to integrate with Cerify from Tektronix. The plugin allows video files to be
analyzed by Cerify during their import. RAW_IMPORT (New in 4.0.), PLACEHOLDER_IMPORT (New in 4.0.3.),

13.12. StorNext Integration 221



Vidispine REST APl Documentation, Release 4.2.2

ESSENCE_VERSION (New in 4.0.3.) and AUTO_IMPORT (New in 4.2.8.) are supported.

13.13.1 Installation

1.

Configure Cerify. The minimum configuration required is the creation of a MediaLocation with a path that
is shared between Cerify and Vidispine storage, and the creation of a Profile. The profile may be empty.

Configure the plugin by creating a Cerify resource containing the Cerify settings, by making a POST request to
API/resource/cerify containing:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<cerify>
<address>http://cerifyserver.example.com:80/CeriTalk?wsdl</address>
<mediaLocation>
<name>Name of Media Location</name>
<storageMethod>VX-6</storageMethod>
</mediaLocation>
<cleanup>false</cleanup>
</cerify>
</ResourceDocument>

The elements are:
address The URL of the Cerify web service.

mediaLocation One or many media locations. If many media locations are configured, the storage method
where the file is stored will determine which one to use.

name The name of the media location. A media location with this name must be configured in Cerify.

storageMethod The storage method that contains the files that should be analyzed by Cerify. Must be on a
file system accessible by Cerify through the path configured in the corresponding media location.

cleanup If set to true, jobs and media sets will be removed from Cerify after completion.

Update the task definition document by inserting a Cerify step at the appropriate position by making a POST
request to API/task-definition containing something similar to:

<TaskDefinitionListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<task>
<description>Executing Cerify job</description>
<extradata>f</extradata>
<flags>12</flags>
<bean>CerifyJobBean</bean>
<method>analyzeFile</method>
<step>250</step>
<dependency>
<step>0</step>
<previous>false</previous>
<allPrevious>true</allPrevious>
</dependency>
<parallelDependency>
<step>0</step>
<previous>false</previous>
<allPrevious>false</allPrevious>
</parallelDependency>
<jobType>RAW_IMPORT</jobType>
<cleanup>false</cleanup>
<critical>true</critical>

222

Chapter 13. Configuration and Integration



Vidispine REST APl Documentation, Release 4.2.2

</task>
</TaskDefinitionListDocument>

Note: for ESSENCE_VERSION, the Cerify job step should run after step 400; for AUTO_IMPORT, the Cerify
step should run after step 200.

13.13.2 Usage

The Cerify profile to use when analyzing a file is specified using the jobmetadata query parameter.
Import a file and let Cerify analyze it using the Cerify profile named mpeg2 PAL:

curl -X POST —u admin:admin —--data-binary @test_file.mpg ’"http://127.0.0.1:8080/API/import/raw?thrott

(New in 4.2.8.) For AUTO_IMPORT job, the job metadata can be set in the AutolmportRuleDocument. For example:

<AutoImportRuleDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<tag>mp4</tag>
<jobmetadata>
<field>
<key>cerifyProfile</key>
<value>Vidispine test profile</value>
</field>
</jobmetadata>
</AutoImportRuleDocument>

When the file is being analyzed by Cerify there will be progress information available in the job. The metadata key is
cerifyProgress and the value will be an integer between 0 and 100.

New in version 4.2.8.
Use the cerifyPriority job metadata field to set the Cerify job priority (LOW, MEDIUM, HIGH). For example:

curl -X POST -u admin:admin --data-binary @test_file.mpg ’"http://127.0.0.1:8080/API/import/raw?thrott

13.13.3 Output

Upon completion the results from Cerify is added to the shape as bulky metadata. The following fields are available.
Note that cerify_alerts might not always be present and its absence means that Cerify did not detect any problem
with the file.

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>cerify_alert</uri>
<uri>cerify_jobinfo</uri>
<uri>cerify_streaminfo</uri>

</URIListDocument>

The element cerify_alerts contains all alerts produced by Cerify. Example:

<field start="466@3082500:128557" end="466@3082500:128557">
<key>cerify_alert</key>
<maps>
<map>

<entry key="alertFrame">http://10.185.0.7:80/ViewFrame.do?&jobmediafile=115&frame=467&audio=fa.
<entry key="alertId">22015</entry>
<entry key="details">In Main profile / Main level, the maximum permitted value of f_code[0][1]
<entry key="level">error</entry>
<entry key="location">00:00:15;16 frame 467</entry>

13.13. Cerify integration 223



Vidispine REST APl Documentation, Release 4.2.2

<entry key="title">Invalid f_code</entry>
<entry key="trackId">-1</entry>
<entry key="type">video</entry>
<entry key="url">http://10.185.0.7:80/protected/AlertDetails.do?job=107&jobmediafile=115&frame:
</map>
</maps>
</field>

cerify_streaminfo contains general information about the analyzed file, such as peak volume level, frame rate,
etc.

See the following documents for for more complete examples of metadata documents produced by this plugin:
e cerify alert.xml
e cerify_jobinfo.xml

e cerify_streaminfo.xml

13.14 FIMS implementation

Vidispine implements the FIMS 1.0.7 Transform specification (http://wiki.amwa.tv/ebu/index.php/SPECIFICATIONS).
Apart from the mandatory features, Vidispine also supports the following optional features:

* Notifications - Vidispine will send HTTP callbacks for events such as job success and job failure.
* Job priorities - Jobs can be assigned one of five priorities.

The services are available at the following location: http://localhost:8080/FIMS/TransformMediaService

13.14.1 Codecs and formats

Vidispine currently supports a subset of the container formats and codecs defined by EBU. For a full list of formats,
see:

» Container formats specified by EBU (http://www.ebu.ch/metadata/cs/web/ebu_ContainerFormatCS_p.xml.htm).

* Video codecs specified by EBU (http://www.ebu.ch/metadata/cs/web/ebu_VideoCompressionCodeCS_p.xml.htm).

* Audio codecs specified by EBU (http://www.ebu.ch/metadata/cs/web/ebu_AudioCompressionCodeCS_p.xml.htm).

Container formats

The following container formats are supported in Vidispine.

ID Name
7.1.2,7.2.2.2 | MP4

7.2.3 DV

7.2.4 AVI

7.2.11 MOV
7.2.19 MKV
7.2.15 FLV
7.2.7,7.2.8 ASF/'WMV
7.3.1,7.3.1.3 | JPG

7.3.8 PNG

224 Chapter 13. Configuration and Integration


http://wiki.amwa.tv/ebu/index.php/SPECIFICATIONS
http://www.ebu.ch/metadata/cs/web/ebu_ContainerFormatCS_p.xml.htm
http://www.ebu.ch/metadata/cs/web/ebu_VideoCompressionCodeCS_p.xml.htm
http://www.ebu.ch/metadata/cs/web/ebu_AudioCompressionCodeCS_p.xml.htm

Vidispine REST APl Documentation, Release 4.2.2

Video codecs

The following video codecs are supported in Vidispine.

ID | Name
2 MPEG-2
5 MIPEG
6 JPG
H264
10 | VC-1
20 DVVIDEO
28 VPS8

Audio codecs

The following audio codecs are supported in Vidispine.

ID Name
7.3,8.4 | MP3

7.2 MP2

8 AAC

11 PCM_S16LE
19 WMAvV1

13.14. FIMS implementation 225



Vidispine REST APl Documentation, Release 4.2.2

226 Chapter 13. Configuration and Integration



CHAPTER
FOURTEEN

TROUBLESHOOTING AND OBTAINING INFORMATION

14.1 Self test

New in version 4.0.

The Vidispine self test will generate a brief report about the system infrastructure for simple troubleshooting.

14.1.1 Tests

The tests are:
e api - The API test. Verifies both api and apinoauth resources.
* solr - Verifies the Solr configuration.
* database - Verifies that the database can be reached.
* transcoder - Verifies that the transcoder can be reached.
* Jjms - Verifies that the JMS queues are well configured.
* tools - Verify the existence of various external tools.
* simplejob - Verifies that the transcoder can execute a simple transcode job.
* thumbnail - Verifies the thumbnail configuration.
* dbstats - Returns some statistics from the database schema.

e ldap - Verifies the LDAP configuration.

14.1.2 Test results

There are four possible outcomes of a test:

OK Vidispine is well configured and running properly.

Warning Some configuration is not valid.

Failed There are tools missing, which could lead to failures of some functions.

Critical Important configuration or tools are missing or invalid, Vidispine will not run properly.

227



Vidispine REST APl Documentation, Release 4.2.2

14.1.3 Running the test

Running the tests can take a while, depending on the size of the system. The dbstats is typically the slowest as it
examines the number of rows in the database among other things. Hence, it sometimes can be beneficial to only run
certain specific tests.

Use the self test resource to execute the tests. For example:

GET API/selftest

<SelfTestDocument xmlns="http://xml.vidispine.com/schema/vidispine" status="failed" took="38170ms">
<test name="api" status="warning" took="408ms">
<test name="adminApi" status="warning">
<message>API is 4.2</message>
<message>Transcoder VX-1 is ERROR: Could not connect</message>
<message>Transcoder VX-2 is 4.1.4-gea8cc32-12511</message>
</test>
<test name="apiNoAuth" status="ok">
<message>Base uri: http://localhost:8089/</message>
</test>
</test>

</SelfTestDocument>

14.2 Error log report

The error log report is used to collect information about the Vidispine installation, and contains information about
certain jobs or items. A log report should always be included if you encounter an issue that you wish to report to us .

14.2.1 Usage

This tool is located at [your server]:8080/LogReport. After filling in all the information, press Extract and collect logs
and wait while the system extract the needed logs; this might take a while. Then press on ‘Save report’ and save the
created .zip-file on your computer. Then send this file to your Vidispine reseller.

Required fields

Error report information This is where you describe your problem. Be specific on what the problem is, what you
did when it appeared.

Time span What time did the error occurred? Set start time and end time

Credentials Your Vidispine user-name and password

Optional fields Fill in this information if any is applicable on the particular problem you are having..

Job-ID The id of the job that failed, if applicable to the issue.

Item-ID The id of the item that the issue relates to, if applicable.

Storage-ID The id of the storage that the issue relates to, if applicable.

User Name of the Vidispine user that was used when this problem occurred.

228 Chapter 14. Troubleshooting and obtaining information



Vidispine REST APl Documentation, Release 4.2.2

14.2.2 Programmatically retrieving log files

New in version 3.3.

If your application has a custom form for reporting issues then you can instead collect the log files using the Vidispine
logs resource.

For example, to retrieve a log report for a specific job:

GET API/vidispine-logs?job=VX-32&comment=Incorrect%20aspect%20ratio%200£%20transcoded%20image
Accept: application/zip

200 OK
Content-Type: application/zip
Transfer—-Encoding: chunked

14.2. Error log report 229



Vidispine REST APl Documentation, Release 4.2.2

230 Chapter 14. Troubleshooting and obtaining information



CHAPTER
FIFTEEN

STANDALONE VIDISPINE

New in version 4.3.

The standalone Vidispine server is an application that can be used to run Vidispine without the need of an application
server such as GlassFish or JBoss. The application embeds Jetty and OpenEJB, which makes it possible to run
Vidispine in an application server or as a standalone service.

The goal is to:
» Make installing, configuring and upgrading VS easier.
* Give us full control of the libraries used with VS.

The differences compared to running Vidispine on GlassFish:
* Solr will NOT run in the same JVM as Vidispine.

* ActiveMQ is used instead of the broker (OpenMQ/HornetQ) used by the application server. ActiveMQ can be
run embedded or standalone.

Here’s what you need to know:

15.1 Installing distribution-specific packages

Use our packages for your distribution to install Vidispine.

15.1.1 Install the packages

You can either install the packages from our repository, or download and install the packages from our download page.

Install from official repository

1. To install Vidispine directly from our repository, head over to the repository (http://repo.vidispine.com/) page
and follow the instructions.

Install downloaded packages

1. Download the latest release from our download page (http://www.vidispine.com/partner/my-software).
2. Untar the downloaded package.

S tar —-xvzf vidispine-X.Y.tar.gz
$ cd vidispine-X-Y

231


http://repo.vidispine.com/
http://www.vidispine.com/partner/my-software

Vidispine REST APl Documentation, Release 4.2.2

3. Install the packages for your distribution:

CentOS:

S

yum install vidispine—-*el6x.rpm transcoder—-*el6x.rpm

Ubuntu:

dpkg -i vidispine-x.deb transcoder-=.deb
S apt-get install -f

This will install Vidispine, Java and any additional dependencies required by Vidispine. There are also optional
dependencies that can be installed manually:

* Graphviz - if you wish to visualize users or jobs.

15.1.2 Initialize the database

1. Create and give Vidispine access to an empty database:

> psgl —-c "CREATE USER vidispine PASSWORD ’‘vidispine’";
S psgl —-c "CREATE DATABASE vidispine OWNER vidispine";

On MySQL, make sure to use UTF-8:

CREATE DATABASE vidispine CHARSET utf8 COLLATE utf8_bin;

2. Modify the configuration file accordingly:

5 vi /etc/vidispine/server.yaml

PostgreSQL:

database:
driverClass: org.postgresqgl.Driver
url: jdbc:postgresqgl://localhost/vidispine
user: vidispine
password: vidispine

MySQL:

database:
driverClass: com.mysql. jdbc.Driver
url: jdbc:mysqgl://localhost/vidispine
user: vidispine
password: vidispine

3. Initialize and migrate the database:

S vidispine db ping # verify connection

vidispine db check # verify if tables exists (they shouldn’t)
S vidispine db init

S vidispine db migrate

vidispine db check # should succeed

Note: The /usr/bin/vidispine command is simply an alias to Jjava -jar
/usr/share/vidispine/server/vidispine-server. jar that is provided by the vidispine-server
package.

232 Chapter 15. Standalone Vidispine



Vidispine REST APl Documentation, Release 4.2.2

15.1.3 Start the services

1. If you’re on CentOS 6 or Ubuntu:

S /etc/init.d/solr start
S /etc/init.d/transcoder start
S /etc/init.d/vidispine start

On systems using systemd:

S systemctl start solr transcoder vidispine

2. Wait for Vidispine to start and then run APIinit to create the system metadata fields and the admin user.

S # wait for 8080 to become available, and then
S curl -X POST localhost:8080/APIinit

Note: APIinit is a migration step that must be run manually. It will be made part of the migration command in
the future.

3. To verify that Vidispine is running, access http://localhost:8080/API/version using curl or HTTPie
(https://github.com/jakubroztocil/httpie), or directly in your browser. The default admin password is admin.

S curl -X GET "localhost:8080/API/version" —uadmin:admin

Troubleshooting

* If the Vidispine service fails, then check the syslog or journal for errors:

$ less /var/log/syslog
S journalctl -xn

* If the service dies, or never becomes available for some reason, then check the server log:

S less /var/log/vidispine/server.log

* If the service fails to start with a “UnsupportedClass VersionError: Unsupported major.minor version 51.0”, then
make sure that the default system Java version is 7+ and not 6 or lower.

S sudo update-alternatives —--config java

15.1.4 Configure Vidispine

Finally, you will need to configure Vidispine.

15.2 Quick setup

Before using Vidispine, make sure to create and configure a storage and thumbnail location, and to configure the
transcoder.

1. Create a storage.

15.2. Quick setup 233


http://localhost:8080/API/version
https://github.com/jakubroztocil/httpie

Vidispine REST APl Documentation, Release 4.2.2

POST API/storage
Content-Type: application/xml

<StorageDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<type>LOCAL</type>
<method>
<uri>file://path/to/files/</uri>
<read>true</read>
<write>true</write>
<browse>true</browse>
<type>NONE</type>
</method>
<autoDetect>true</autoDetect>
</StorageDocument>

2. Create a thumbnail resource.

POST API/resource/thumbnail
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<thumbnail>
<path>file://path/to/thumbnails/</path>
</thumbnail>
</ResourceDocument>

3. Configure a trancoder. For example, with Vidispine and the transcoder on the same server:

POST API/resource/transcoder
Content-Type: application/xml

<ResourceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<transcoder>
<url>http://localhost:8888/</url>
</transcoder>
</ResourceDocument>

Tip: Use curl, HTTPie (https://github.com/jakubroztocil/httpie) or the HTTP client of your choosing to make the
requests. For example, using HTTPie:

S http post "localhost:8080/API/storage" @storage.xml
S http post "localhost:8080/API/resource/thumbnail”™ @thumbnail.xml
S http post "localhost:8080/API/resource/transcoder" Q@transcoder.xml

15.3 Service configuration

15.3.1 The vidispine service user

The post-installation script in the packages will create the vidispine user and group if they do not exist.

If you want to make sure that the vidispine user has a specific UID and GID, then create the vidispine user
and group manually before installing any packages.

234 Chapter 15. Standalone Vidispine


https://github.com/jakubroztocil/httpie

Vidispine REST APl Documentation, Release 4.2.2

15.3.2 Service dependencies

If you’re running all components on the same server, then it can be beneficial to make sure that the transcoder and Solr
is started before Vidispine. Note that this is only possible on systems running systemd.

S vi /etc/systemd/system/vidispine.service.d/local.conf
[Unit]
Wants=transcoder.service solr.service

systemctl daemon-reload
systemctl enable vidispine

15.3.3 Setting JVM options

On Debian, edit the /etc/default/vidispine file:

S vi /etc/default/vidispine
JAVA_OPTS="-Xmx8192m —-XX:MaxPermSize=512m"

Or on CentOS 6, the file /etc/sysconfig/vidispine:

S vi /etc/sysconfig/vidispine
JAVA_OPTS="-Xmx8192m -XX:MaxPermSize=512m"

On systems running systemd, create a file suchas /etc/systemd/system/vidispine.service.d/local.conf
and override the default JAVA_OPTS:

$ vi /etc/systemd/system/vidispine.service.d/local.conf
[Service]
Environment="JAVA_OPTS=-Xmx8192m -XX:MaxPermSize=512m"

15.4 Clustering

A cluster can be created by installing Vidispine on multiple servers and configuring all instances to connect to the
same database.

The one setting that should be set is the bindAddress, which an instance will bind to and publish to the other
members of the cluster.

cluster:
bindAddress: vsl.example.com

You can also change the address that is published, for example if there’s a firewall with port forwarding rules set up in
front of each server.

cluster:
bindAddress: vsl.example.com
bindPort: 7800
bindPortRange: 0
externalAddress: fw.example.com
externalPort: 7801

Note: For this to work you also need to use an external ActiveMQ instance, so make sure that the embedded broker
is disabled and that the configuration points to your ActiveMQ instance:

15.4. Clustering 235



Vidispine REST APl Documentation, Release 4.2.2

broker:
url: tcp://activemg.example.com:61616
#embeddedBroker: broker: (tcp://localhost:61616)

15.4.1 Quick cluster setup

It is also possible to create a cluster on a single machine by starting multiple server processes each with a different
configuration file.

S cp server.yaml instanceA.yaml instanceB.yaml
S vi instanceA.yaml instanceB.yaml

Make sure that all instances have distinct ports. Then start the instances that are to be part of the cluster:

$ java —-Jjar vidispine-server.jar server instanceA.yaml 2>&1 1>instanceA.log &
S java -jar vidispine-server.jar server instanceB.yaml 2>&1 1>instanceB.log &

Tail the log and you should see that the processes have found each other and have formed a cluster.

INFO [2015-05-27 13:06:27,652] [403] org.infinispan.remoting.transport.jgroups.JGroupsTransport:

15.5 Upgrading

15.5.1 Upgrading Vidispine
1. Install the latest server and transcoder packages.

2. Use the check command to verify that the configuration file is still valid.

> vidispine check
S vidispine db check

3. Make sure that the server is stopped. On CentOS 6 or Ubuntu:

/etc/init.d/vidispine stop
On systems using systemd:
S systemctl stop vidispine
4. Migrate the database:
S vidispine db migrate

Before migrating you can verify the pending migrations using the ——dry-run flag.

S vidispine db migrate —--dry-run

Note: The dry-run output is for informational use only. Do not execute any SQL statements in the output
directly.

5. Start all Vidispine services.

236 Chapter 15. Standalone Vidispine

ISH



Vidispine REST APl Documentation, Release 4.2.2

15.5.2 Upgrading from GlassFish

To move from GlassFish to the standalone server application:
1. Make sure that GlassFish is stopped.
2. Install the server and transcoder packages as described in the installation guide.
3. Modify the server configuration to match the GlassFish configuration.
» Use the same database settings.
* Add any custom JVM settings to the service configuration.
4. Migrate the database.
5. Start the vidispine, solr and transcoder services.
Once all steps have been performed and Vidispine is up and running:
1. Re-index items, collections and files to populate Solr.

2. Remove GlassFish.

Upgrading without re-indexing
It is also possible to avoid the re-index step by moving the existing Solr index to the new location used by the solr
service.

1. Make sure that no application is using Vidispine.

2. Disable all services except the indexing service to make sure that all pending index updates are sent to Solr and
removed from the JMS queue.

$ http put "localhost:8080/API/vidispine-service/disable"
S http put "localhost:8080/API/vidispine-service/service/IndexCruncher/enable"

Then wait until all messages on the JIMS queue “IndexQueue” have been processed by watching:

S /opt/glassfish3/mg/bin/imgcmd list dst

3. Stop GlassFish.
4. Make sure that the vidispine-solr package is installed and that the so1r service is not running.

S /etc/init.d/solr/stop

> systemctl stop solr

5. Move the Solr index to the new location.

S mv /opt/glassfish3/glassfish/solrhome/solr/collectionl/data/ /var/lib/vidispine/solr/collectic

6. Start Solr and verify that the new index is in used by checking the document count from the Solr admin page at
http://localhost:8983/solr/#/collection].

15.6 Server configuration

Dropwizard 0.7.1 is used to start and configure Jetty and to parse and validate the command line and configuration
file. This is only mentioned here as the Dropwizard Configuration Reference lists and explains the base settings that
can be used in the configuration file.

15.6. Server configuration 237


http://localhost:8983/solr/#/collection1

Vidispine REST APl Documentation, Release 4.2.2

* Dropwizard 0.7.1 Configuration Reference (http://dropwizard.github.io/dropwizard/0.7.1/docs/manual/configuration.html)

Unfortunately the database properties are absent from the 0.7.1 reference. Have a look at the 0.8 reference instead.
However, the validationQueryTimeout property is new in 0.8 and is not supported in 0.7.1.

* Dropwizard 0.8 Database Configuration (http://dropwizard.github.io/dropwizard/0.8.0/docs/manual/configuration.html#database)

15.6.1 Environment variables

Environment variables can be used in the YAML configuration file.
For example:

database:
driverClass: org.postgresqgl.Driver
url: jdbc:postgresqgl://S${DATABASE_HOST}/${DATABASE_NAME}
user: ${DATABASE_USER}
password: ${DATABASE_PASSWORD}

15.6.2 Additional settings

In addition, the following properties are supported:

broker

Configures how to connect to ActiveMQ.
e user: The user to authenticate as.
 password: The password to authenticate using.
e url: Default is “tcp://localhost:61616”.

e embeddedBroker: The broker URI (http://activemq.apache.org/broker-uri.html) to use to start an embedded
broker. For example “broker:(tcp://localhost:61616)”. Default is “”” (no embedded broker).

Note: If you are using embedded ActiveMQ with KahanDB, the KahanDB journal log could keep growing if there
are expired messages in the queue “ActiveMQ.DLQ”.

To fix this, you will need to enable jmx in the broker URI (http://activemq.apache.org/broker-uri.html) , and purge the
queue manually using activemqg-admin (http://activemq.apache.org/activemq-command-line-tools-reference.html).

embeddedBroker: broker: (tcp://localhost:61616) ?2usekahadb=truegkahadb.directory=/path/to/db/&persister
./activemg-admin -Dactivemq. jmx.url=service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi purge Activel

Or setup a standalone ActiveMQ instance, and set processExpired="false”

http://activemq.apache.org/message-redelivery-and-dlg-handling.html

ejbPool

These settings configures the stateless container in OpenEJB. They are explained in more detail at
http://tomee.apache.org/containers-and-resources.html.

* maxSize: The maximum number of beans in the stateless bean pool. Default is 10.

238 Chapter 15. Standalone Vidispine


http://dropwizard.github.io/dropwizard/0.7.1/docs/manual/configuration.html
http://dropwizard.github.io/dropwizard/0.8.0/docs/manual/configuration.html#database
http://activemq.apache.org/broker-uri.html
http://activemq.apache.org/broker-uri.html
http://activemq.apache.org/activemq-command-line-tools-reference.html
http://activemq.apache.org/message-redelivery-and-dlq-handling.html
http://tomee.apache.org/containers-and-resources.html

Vidispine REST APl Documentation, Release 4.2.2

¢ idleTimeout:

* strictPooling: If the pool may NOT grow larger then maxSize. Default is false.

cluster

¢ bindAddress: The address to bind on, as an IP address or hostname. Default is 127.0.0.1.

* bindPort: The port to bind on. Default is 7800.

» bindPortRange: The range of ports to try in case bindPort is taken. Default is 30.

* externalAddress: The address to publish to members in the cluster. Default is bindAddress.

« externalPort: The port to publish to members in the cluster. Default is the port that was bound on.

15.7 Package reference

15.7.1 Packages

The packages provided by Vidispine are:
vidispine-server The Vidispine server application.

vidispine-solr The latest supported version of Apache Solr, bundled with the Solr config and schema used by
Vidispine.

vidispine-tools Optional command line tools.

transcoder The Vidispine transcoder.

15.7.2 Files

The key files used by Vidispine:

/etc/vidispine/server.yaml The server configuration file.

/etc/vidispine/License.lic Your Vidispine license.

/etc/vidispine/slaveAuth.lic Your slave license file when using master/slave licensing.
/var/lib/vidispine/activemq/ The default location of the ActiveMQ data files when running an embedded broker.
/var/lib/vidispine/solr/ The location of the Solr cores.

/var/log/vidispine/server.log The Vidispine server log file.

/var/log/vidispine/transcoder.log The Vidispine transcoder log file.

See also:

See our knowledge base articles (http://vidispine.tenderapp.com/kb/guides) for how to install Vidispine onto an appli-
cation server.

15.7. Package reference 239


http://vidispine.tenderapp.com/kb/guides

Vidispine REST APl Documentation, Release 4.2.2

240 Chapter 15. Standalone Vidispine



CHAPTER
SIXTEEN

API REFERENCE

16.1 Access controls

16.1.1 Managing access controls

In the text below only /item/ resource is specified but the same syntax applies for the /collection/ resource.

Retrieve access control list for an item
GET /item/ (item-id) /access/
Retrieves the entire access control list for the specified item.
Produces
« application/xml, application/json — AccessControlListDocument

Role _accesscontrol_read

Add a new entry access control entry
POST /item/ (item-id) /access/
Adds a new access control entry for the specified item.
Accepts
* application/xml, application/json — AccessControlDocument
Produces
* text/plain — The id of the created entry.

Role _accesscontrol_write

Example

POST /item/VX-123/access/
Content-Type: application/xml

<AccessControlDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<permission>READ</permission>
<group>testGroup</group>
<operation>
<uri/>

241



Vidispine REST APl Documentation, Release 4.2.2

</operation>
</AccessControlDocument>

Retrieve a specific access control entry
GET /item/ (item-id) /access/
access-id Retrieves the desired access control entry.
Status Codes
* 404 Not found — No entry with that id exists in that item.
Produces

* application/xml, application/json — An AccessControlDocument containing the requested
access control entry.

Role _accesscontrol_read

Delete a specific access control entry
DELETE /item/ (item-id) /access/
access-id Removes the desired access control entry.
Status Codes
* 200 OK - The entry was successfully removed.
* 404 Not found — No entry with that id exists in that item.

Role _accesscontrol_write

Add access control entries to all items
POST /item/access/
Adds access control entries to all known items.
Accepts
* application/xml, application/json — AccessControlDocument

Role _administrator

Remove all access control entries from all items

DELETE /item/access/
Deletes all access control entries from all known items.

Role _administrator

16.1.2 Default access controls

Each user can specify what access control that will be applied to an imported item. The user importing the item will
always be granted OWNER permissions.

242 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

List the default access controls for the current user

GET /import/access/
Lists the access control list that will be applied on imported items.

Produces

* application/xml, application/json — An ImportAccessControlListDocument

Role _import

Example

GET /import/access

<ImportAccessControlListDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<group>
<name>mygroup</name>
<permission>READ</permission>
</group>
</ImportAccessControlListDocument>

Add a group to the default access control list

PUT /import/access/group/ (group-name)
Sets the permissions for a certain group.

Query Parameters

 permission — The level of permissions to grant the group.

Role _import

Example

PUT /import/access/group/mygroup?permission=READ

200 OK

Remove a group from the default access control list

DELETE /import/access/group/ (group-name)
Removes the specified group from the default access control list.

Role _import

Example

DELETE import/access/group/mygroup

200 OK

16.1. Access controls

243



Vidispine REST APl Documentation, Release 4.2.2

16.1.3 Viewing applied access controls

To review all access control entries that affects an item an AccessControlMergedDocument can be retrieved.

Retrieve a list of applied access control entries

There are two modes of operation, either retrieving the access on the item for all users or querying for the access of
a specific user. In the former case no parameters are specified and in the latter all parameters must be supplied. The
entries will be listed according to priority for every user. If the access is given through a group or a collection, the
names and ids of those will be given.

GET /item/ (item-id) /merged—-access/
Query Parameters
* username — The name of the user to check.
* permission — The lowest required permission level.
* type — The type of operation to check for.
Produces

« application/xml, application/json — An AccessControlMergedDocument containing all ac-
cess control that affects the item.

Role _accesscontrol_read

Example: retrieving all entries

GET /item/VX-250

<AccessControlMergedDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<access priority="1" id="VX-3111" username="admin">
<permission>ALL</permission>
<type>GENERIC</type>

</access>

<access priority="2" i1id="VX-24112" username="admin">
<permission>WRITE</permission>
<type>GENERIC</type>
<collection>VX-10</collection>

</access>

<access priority="3" id="VX-4119" username="admin">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-23</collection>

</access>

<access priority="4" id="VX-2221" username="admin">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-12</collection>

</access>

<access priority="5" id="VX-2205" username="admin">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-10</collection>

</access>

<access priority="1" id="VX-24090" username="test">

244 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

<permission>READ</permission>
<type>METADATA</type>
<group>mygroup</group>
</access>
</AccessControlMergedDocument>

Example: querying about specific access

Checking if the user admin has full access to the metadata of item VX-250. Notice that the access provided by VX-
24112 does not match, but it is less prioritized than the access of VX-3111 and thus the user has full access to the
metadata.

GET /item/VX-250/merged-access?username=admin&permission=ALL&type=METADATA

<AccessControlMergedDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<query>
<username>admin</username>
<permission>ALL</permission>
<type>METADATA</type>
<item>VX-250</item>

</query>

<access priority="1" matches="true" id="VX-3111">
<permission>ALL</permission>
<type>GENERIC</type>

</access>

<access priority="2" matches="false" id="VX-24112">
<permission>WRITE</permission>
<type>GENERIC</type>
<collection>VX-10</collection>

</access>

<access priority="3" matches="true" id="VX-4119">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-23</collection>

</access>

<access priority="4" matches="true" id="VX-2221">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-12</collection>

</access>

<access priority="5" matches="true" id="VX-2205">
<permission>ALL</permission>
<type>GENERIC</type>
<collection>VX-10</collection>

</access>

</AccessControlMergedDocument>

Retrieve a list of applied access control entries that affects groups
GET /item/ (item-id) /merged—-access/group
Lists groups that have access to an item.

Even though a user belongs to a group that has access to an item, the user may not have access due to other
access control entries that take precedence.

Groups without users will not appear, unless the group belongs to an inheritance hierarchy that has users.

16.1. Access controls 245



Vidispine REST APl Documentation, Release 4.2.2

Query Parameters
e full -

— true - Return all access controls that apply for a group. Also include additional infor-
mation about the access controls in the response.

— false (default) - Return a single access entry with the permission that applies for each
group and type.

New in version 4.2.3.
Produces
* application/xml, application/json — An AccessControlMergedGroupDocument.

Role _accesscontrol_read

Example

GET /item/VX-1000/merged—-access/group

<AccessControlMergedGroupDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<access>
<group>groupA</group>
<permission>READ</permission>
<type>GENERIC</type>

</access>

<access>
<group>_transcoder</group>
<permission>WRITE</permission>
<type>GENERIC</type>

</access>

<access>
<group>_special_all</group>
<permission>WRITE</permission>
<type>GENERIC</type>

</access>

<access>
<group>groupD</group>
<permission>READ</permission>
<type>GENERIC</type>

</access>

<access>
<group>groupC</group>
<permission>READ</permission>
<type>GENERIC</type>

</access>

<access>
<group>groupB</group>
<permission>READ</permission>
<type>GENERIC</type>

</access>

</AccessControlMergedGroupDocument>

246 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

16.2 Audit trails

The audit log records all requests made to the API, excluding the request data, for later use. It is typically used for
troubleshooting, to be able to determine what happened when, and for examining actions taken by users or other
services.

16.2.1 Examining the log

Retrieving log content

GET /log
Retrieves log entries according to the specified filtering criteria. The path can be seen as having an implicit
wildcard in the end, unless it is disabled with the wildcard parameter. For example /item/VX-123 will
match /item/VX-123/shape butnot /item/VX-124.

Query Parameters
* path — Optional string, matches path in log lines, default is /.
* first — Optional integer, number of first row to return, default is 0.

* rows — Optional integer, number of rows to return, default is 100. Cannot be greater than
1000.

* starttime — Optional ISO 8601 time, for lower limit of rows to return.
* endtime — Optional ISO 8601 time, for upper limit of rows to return.
* wildcard -

— false - Do not treat do truncation at end of path.

— true - Treat end of path to have a » wildcard.

* username — Optional string, only return rows that the specified user invoked. Default is all
TOWS.

* method — Optional string, only return rows with the specified method, e.g. GET. Default is
all rows.

» performCount —
— false (default) - Do not return a total number of rows matching criteria.
— true - Return a total number of rows matching criteria (except first and count).
Produces
« application/xml, application/json — AuditLogDocument

Role _administrator

Example

GET /log?path=/item/VX-10&method=GET&username=admin&performCount=true

<AuditLogDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<count>13</count>
<entry timestamp="2010-11-26T15:46:25.328+01:00">
<username>admin</username>

16.2. Audit trails 247



Vidispine REST APl Documentation, Release 4.2.2

<method>GET</method>
<path>/item/VX-10/uri</path>
<queryParameters>methodType=AUTO</queryParameters>
<matrixParameters/>

</entry>

<entry timestamp="2010-11-26T15:46:20.053+01:00">
<username>admin</username>
<method>GET</method>
<path>/item/VX-10/uri</path>
<queryParameters/>
<matrixParameters/>

</entry>

<entry timestamp="2010-11-26T15:28:03.674+01:00">
<username>admin</username>
<method>GET</method>
<path>/item/VX-10</path>
<queryParameters>content=shape</queryParameters>
<matrixParameters/>

</entry>

<entry timestamp="2010-11-26T15:26:49.031+01:00">
<username>admin</username>
<method>GET</method>
<path>/item/VX-10</path>
<queryParameters>content=shape</queryParameters>
<matrixParameters/>

</entry>

<entry timestamp="2010-11-26T15:16:53.508+01:00">
<username>admin</username>
<method>GET</method>
<path>/item/VX-10</path>
<queryParameters>content=shape</queryParameters>
<matrixParameters/>

</entry>

</AuditLogDocument>

Exporting log content

GET /log/export
Is very similar to the method above, but instead of delivering the entire document at once it is streamed. There-
fore there is no restriction on the maximum number of rows that can be retrieved.

Query Parameters
 path — Optional string, matches path in log lines, default is /.
* first — Optional integer, number of first row to return, default is 0.
* rows — Optional integer, number of rows to return, defaultis 100.
* starttime — Optional ISO 8601 time, for lower limit of rows to return.
 endtime — Optional ISO 8601 time, for upper limit of rows to return.
* wildcard —
— false - Do not treat do truncation at end of path.

— true - Treat end of path to have a « wildcard.

248 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

» username — Optional string, only return rows that the specified user invoked. Default is all
TOWS.

* method — Optional string, only return rows with the specified method, e.g. GET. Default is
all rows.

e performCount —
— false (default) - Do not return a total number of rows matching criteria.
— true - Return a total number of rows matching criteria (except first and count).
Produces
* application/xml — AuditLogDocument

Role _administrator

16.3 Collections

A collection is an ordered logical set of items, libraries and other collections.

16.3.1 Managing collections
Retrieve a list of all collections
GET /collection
Retrieves a list of all known collections.
Produces
« application/xml, application/json — CollectionListDocument

Role _collection_read

Create a collection
POST /collection
Generates a new collection and returns the id associated with that collection.
Query Parameters
* name — Optional name of the collection. ( optional )
Produces
« application/xml, application/json — CollectionDocument

Role _collection_write

Delete a collection
DELETE /collection/ (collection-id)
Delete specified collection.
Note that the actual items and libraries that are contained within the collection are not modified.

Status Codes

16.3. Collections 249



Vidispine REST APl Documentation, Release 4.2.2

¢ 200 OK - The collection is deleted.
¢ 404 Not found — Could not find the collection.

Role _collection_write

Rename a collection
PUT /collection/ (collection-id) /rename
Renames the collection with the Identifiers collection-id.
Query Parameters
* name — Mandatory, new name of the collection.

Role _collection_write

16.3.2 Collection content

Retrieve the contents of a collection
GET /collection/ (collection-id)
Return the ids of the objects contained within the collection, that has the id collection—-id.
Status Codes
* 404 Not found — Could not find the collection.
Produces
« application/xml, application/json — CollectionDocument

Role _collection_read

Retrieve the items of a collection
GET /collection/ (collection-id) /item
Retrieves only the items of the collection. This method can be used to retrieve item content.

Changed in version 4.4: Queries on collection items will now return items in creation order by default. See
indexCollectionItemOrder on how to revert back to using the insert/custom collection item ordering.

Query Parameters

* first — Integer. The index of the first element to retrieve, must be a non-zero positive integer.
Defaultis 1.

* number — Integer. The total number of elements to retrieve, must be on the interval [0, 100].
Defaultis 100.

Status Codes

* 404 Not found — Could not find the collection.
Produces

« application/xml, application/json — ItemListDocument

Role _collection_read

250 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Perform item search within a collection

New in version 4.0.
GET /collection/ (collection-id) /item

PUT /collection/ (collection-id) /item
Performs a search among the items in the specified collection.

Changed in version 4.4: Queries on collection items will now return items in creation order by default. See
indexCollectionItemOrder on how to revert back to using the insert/custom collection item ordering.

Content Parameters See ../item—content
Query Parameters
* result —
— 1list (default) - Return a list of items.
— library - Create a library with the matching items.

°q - XML/JSON, ItemSearchDocument. Only with GET
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3).

* count —
— true (default) - Return hits in result.
— false - Do not return hits in result, in order to produce results faster.
Matrix Parameters
* library — Restricts search to within library, /dentifiers. Default is «, all items.

* first — Integer, from resulting list of items, start return list from specified offset. Default is
1, start return list from beginning.

* number — Integer, set a limit on maximum number of hits. Default 100.

e libraryld — If set, the library identified by this id will be used instead of creating a new
library.

o autoRefresh — See Self-refreshing libraries. Defaults to false.

o updateMode — See Self-refreshing libraries. Defaults to MERGE.

» updateFrequency — See Self-refreshing libraries. Defaults to no periodic updates.
Produces

« application/xml, application/json — ItemListDocument

* text/plain — CRLF-delimited list of ids or URLs
Status Codes

* 400 Bad request — Either the ItemSearchDocument or a parameter was invalid.

Role _collection_read

Semantics

Note  that searching can also be performed by wusing the HTTP method PUT
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6) using the same syntax, except for the parame-
ter g is omitted and the ltemSearchDocument is sent in the body of the request.

16.3. Collections 251


http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

Vidispine REST APl Documentation, Release 4.2.2

Tip: There is a limit on how many items that can be returned for each call to this method. To get all items, iterate the
calls, or even better in a batch scenario, use Listing items in batch.

Example

GET /collection/VX-76/item
Accept: application/xml

<ItemListDocument>
<item id="VX-45"/>
<item id="VX-46"/>
<item id="VX-47"/>
<item id="VX-62"/>

</ItemListDocument>

Add an item, library or collection to a collection

PUT /collection/ (collection-id) /
id Adds an item, library or collection with the id 1d, to the collection with the id collection—-id. If idis
already present within the collection, this is a no-op.

Query Parameters
. type —
— collection - The object identified by id is a collection.
— item (default) - The object identified by id is an item.
— library - The object identified by id is a library.
* addItems —

— true - Library items will be added individually. Only has any effect when
type=library.

— false - Library will be added to collection, not specific items.
Status Codes
* 200 OK - The collection, item or library was added, or already existed within the collection.
* 400 Bad request — Cannot add a collection to itself, or the type was given an invalid value.
* 404 Not found — Could not find the collection, item or library.

Role _collection_write

Remove an item, library or collection from a collection

DELETE /collection/ (collection-id) /
id Attempts to remove specific content with the id, 1d, from a collection with the id collection-id.
Note that the object corresponding to the id is not altered.

Query Parameters

. type —

252 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

— collection - The object identified by id is a collection.
— item (default) - The object identified by id is an item.
— library - The object identified by id is a library.
Status Codes
* 200 OK - The item/library is removed from the collection.

* 400 Bad request — The type was given an invalid value.

* 404 Not found — Could not find the collection or the item/library.

Role _collection_write

16.3.3 Collection metadata

Metadata can be set on collections, in manner very similar to Metadata.

Retrieve collection metadata
GET /collection/ (collection-id) /metadata
Retrieves the metadata from the specified collection.
Matrix Parameters
e interval — See Ger metadata.
¢ field — See Ger metadata.
* language — See Ger metadata.
» sampleRate — See Get metadata.
e track — See Get metadata.
* include - See Ger metadata.
* conflict — See Ger metadata.
Produces
* application/xml, application/json — MetadataDocument

Role _metadata_read

Update collection metadata
PUT /collection/ (collection-id) /metadata
Updates the metadata of the collection.
Query Parameters
e revision — See Add a metadata change Set.
Accepts
* application/xml, application/json — MetadataDocument

Produces

 application/xml, application/json — MetadataDocument with the metadata after the

changes have been applied.

16.3. Collections

253



Vidispine REST APl Documentation, Release 4.2.2

Role _metadata_write

16.3.4 Searching for collections

Searching collections behaves much like Search.

Search for collections
PUT /collection
Searches for collections that matches the query.
Query Parameters
* first — Integer. The index of the first collection. Default is 1.
* number — Integer. The number of collections to retrieve. Defaultis 100.
Accepts
« application/xml, application/json — I/temSearchDocument
Produces
* application/xml, application/json — CollectionListDocument

Role _collection_read

Retrieve search history

New in version 4.0.3.

GET /collection/history
Retrieves a list of searches made by a particular user, include “Collection search ” and “Item and collection

search”. The results are ordered according to timestamp, with the latest searches being first. Duplicate queries
will not be retrieved.

Query Parameters
* start — Optional. If set, only searches made after this date will be retrieved.

¢ maxResults — The maximum number of searches that will be retrieved. The value must be
between 1 and 50, default is 10.

» username — The name of the user that has performed the searched. If not specified, the user
performing the request will be selected.

Status Codes
* 400 Bad request — The request was malformed.
Produces
« application/xml, application/json — SearchHistoryListDocument

Role _item_search

254 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

16.3.5 Ordering collections

Collections will return their elements in the same order for every request.

Changed in version 4.4: Queries on collection items will now return items in creation order by default. See
indexCollectionItemOrder on how to revert back to using the insert/custom collection item ordering.

Reordering collection elements

POST /collection/ (collection-id) /order
Changes the order of the elements. Note that the reordering elements are parsed and applied in the sequence
that they are supplied.

Accepts

* application/xml, application/json — CollectionReorderDocument containing the changes
to the order.

Produces

« application/xml, application/json — CollectionDocument containing the elements in their
new order.

Role _collection_write

Example

Starting with an unordered collection of items, we will sort it according to item id. At the start it contains items [VX-7,
VX-8, VX-5, VX-6].

GET /collection/VX-1

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<loc>http://localhost:8080/API/collection/VX-1/VX-1</loc>

<id>vx-1</id>

<content>
<id>Vvx-7</id>
<uri>http://localhost:8080/API/item/VX-7</uri>
<type>item</type>

</content>

<content>
<id>Vvx-8</id>
<uri>http://localhost:8080/API/item/VX-8</uri>
<type>item</type>

</content>

<content>
<id>Vx-5</id>
<uri>http://localhost:8080/API/item/VX-5</uri>
<type>item</type>

</content>

<content>
<id>VX-6</id>
<uri>http://localhost:8080/API/item/VX—-6</uri>
<type>item</type>

</content>

</CollectionDocument>

16.3. Collections 255



Vidispine REST APl Documentation, Release 4.2.2

POST /collection/VX-1l/order
Content-Type: application/xml

<CollectionReorderDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<!-- Find the current first element and put VX-5 first -->
<item id="VX-5" before="VX-7"/>

<!-- Add the other elements after VX-5 in sequence ——>

<item id="VX-6" after="VX-5"/>

<item id="VX-7" after="VX-6"/>

<item id="VX-8" after="VxX-7"/>
</CollectionReorderDocument>

<CollectionDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<id>Vvx-1</id>

<content>
<id>Vx-5</id>
<uri>http://localhost:8080/API/item/VX-5</uri>
<type>item</type>

</content>

<content>
<id>Vx-6</id>
<uri>http://localhost:8080/API/item/VX—-6</uri>
<type>item</type>

</content>

<content>
<id>vxX-7</id>
<uri>http://localhost:8080/API/item/VX-7</uri>
<type>item</type>

</content>

<content>
<id>Vvx-8</id>
<uri>http://localhost:8080/API/item/VX-8</uri>
<type>item</type>

</content>

</CollectionDocument>

16.3.6 Folder mapped collections

It is possible to map a Vidispine collection to a folder on the file system. This means that any files of items part of the
collection will be stored in a sub-folder with the same name as the collection. For a collection marked as mapped to a
folder, some additional rules are enforced when it comes to collection relationships:

* A folder mapped collection can have at most one folder mapped parent collection.
¢ An item can have at most one folder mapped parent collection.

That is, the same rule that applies to files on a traditional file system.

Note: Adding an item to a folder mapped collection will not move the item files to the corresponding folder immedi-
ately as the file movement is done asynchronously in the background.

Mark a collection as folder mapped

PUT /collection/ (collection-id) /map-to—-folder
Marks collection collection-id as mapped to folder. Files in child items will be moved to the correspond-

256 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

ing folder in the storages.

Role _collection_write

Un-mark a collection as folder mapped

DELETE /collection/ (collection-id) /map—-to—folder
Marks collection collection—id as not mapped to folder. Files in child items will be moved to the root
directory in the storages.

Role _collection_write

Report that the folder name has changed on disk

PUT /collection/ (collection-id) /folder—name
If the folder name has been changed by a user or an external program, it can be reported to Vidispine with this
command. The affected file entities in the database will then be updated with the new path, and the collection
name will be changed.

Query Parameters
* name — The new name of the folder (required).

Role _collection_write

16.4 Configuration

The configuration resource contains the system wide configuration that would typically be tuned by an administrator
or set once when installing Vidispine and your application on a new system.

See also:

See Configuration properties for more information about the available configuration properties.

16.4.1 Indexing settings
Get the indexing configuration
GET /configuration/indexing
Returns the current indexing configuration.
Produces

« application/xml, application/json — Indexing ConfigurationDocument

Role _administrator

Update the indexing configuration

PUT /configuration/indexing
Updates the indexing configuration.
Status Codes

* 200 OK - The configuration was updated successfully.

16.4. Configuration 257



Vidispine REST APl Documentation, Release 4.2.2

Accepts
* application/xml — /ndexing ConfigurationDocument

Role _administrator

16.4.2 Metrics settings

See Monitoring for examples.

Get the metrics configuration
GET /configuration/metrics
Returns the current metrics configuration.
Produces
« application/xml, application/json — MetricsConfigurationDocument

Role _administrator

Update the metrics configuration
PUT /configuration/metrics
Updates the metrics configuration.
Status Codes
* 200 OK - The configuration was updated successfully.
Accepts
* application/xml — MetricsConfigurationDocument

Role _administrator

16.4.3 Job pool configuration

Get the job pool configuration
GET /configuration/job-pool
Returns the current job pool configuration.
New in version 4.2.2.
Produces
* application/xml, application/json — JobPoolListDocument

Role _administrator

Example

GET /configuration/job-pool

258 Chapter 16

. API Reference



Vidispine REST APl Documentation, Release 4.2.2

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>3</maxConcurrent>
</JobPoolListDocument>

Update the job pool configuration

PUT /configuration/job-pool
Updates the job pool configuration.

New in version 4.2.2.
Accepts
« application/xml, application/json — JobPoolListDocument

Role _administrator

Example

PUT /configuration/job-pool
Content-Type: application/xml

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>5</maxConcurrent>
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

Delete all job pools

DELETE /configuration/job-pool
Deletes all job pools.
Note that the max concurrent jobs setting will not be affected.
New in version 4.2.2.

Role _administrator

Example

GET /configuration/job-pool

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>5</maxConcurrent>
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>

16.4. Configuration

259



Vidispine REST APl Documentation, Release 4.2.2

<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

DELETE /configuration/job-pool
GET /configuration/job-pool

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>5</maxConcurrent>
</JobPoolListDocument>

Delete a specific job pool

DELETE /configuration/job-pool/ (priority)
Deletes the job pool with the given priority threshold.

New in version 4.2.2.

Role _administrator

Example

GET /configuration/job-pool

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>5</maxConcurrent>
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
<pool>
<priorityThreshold>MEDIUM</priorityThreshold>
<size>3</size>
</pool>
</JobPoolListDocument>

DELETE /configuration/job-pool/MEDIUM
GET /configuration/job-pool

<JobPoolListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<maxConcurrent>5</maxConcurrent>
<pool>
<priorityThreshold>HIGH</priorityThreshold>
<size>2</size>
</pool>
</JobPoolListDocument>

260 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

16.4.4 FTP pool configuration

Get the FTP pool configuration
GET /configuration/ftp-pool
Returns the current FTP connection pool configuration.
New in version 4.2.4.
Produces
« application/xml, application/json — FipPoolConfigurationDocument

Role _administrator

Example

GET /configuration/ftp-pool

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool/>
</FtpPoolConfigurationDocument>

Update the job pool configuration
PUT /configuration/ftp-pool
Updates the FTP connection pool configuration.
New in version 4.2.4.
Accepts
« application/xml, application/json — FipPoolConfigurationDocument

Role _administrator

Example

PUT /configuration/ftp-pool
Content-Type: application/xml

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool>
<minSize>0</minSize>
<maxSize>-1</maxSize>
<evictionInterval>30000</evictionInterval>
<minIdleTime>60000</minIdleTime>
</pool>
</FtpPoolConfigurationDocument>

Delete the FTP pool

DELETE /configuration/ftp-pool
Deletes the FTP connection pool.

New in version 4.2.4.

16.4. Configuration 261



Vidispine REST APl Documentation, Release 4.2.2

Role _administrator

Example

GET /configuration/ftp-pool

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pool/>
</FtpPoolConfigurationDocument>

DELETE /configuration/ftp-pool
GET /configuration/ftp-pool

<FtpPoolConfigurationDocument xmlns="http://xml.vidispine.com/schema/vidispine"/>

16.4.5 Configuration properties
Get list of configuration properties
GET /configuration/properties
Returns a document containing all configuration properties set in the system.
Produces

* application/xml, application/json — ConfigurationPropertyListDocument

Role _administrator

Example

GET /configuration/properties

<ConfigurationPropertyListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<property lastChange="2014-06-03T15:18:49.608+02:00">
<key>apiuri</key>
<value>http://vs.example.com:8080/API</value>
</property>
</ConfigurationPropertyListDocument>

Get a single configuration property
GET /configuration/properties/ (key)
Returns a document or string containing all current setting for a configuration property.
Status Codes
* 200 OK - The value is returned
* 404 Not found — The configuration property is not set
Produces

* application/xml, application/json — ConfigurationPropertyDocument

262 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

* text/plain — String value

Role _administrator

Example

GET /configuration/properties/apiuri
Accept: application/xml

<ConfigurationPropertyDocument xmlns="http://xml.vidispine.com/schema/vidispine" lastChange="2014-06
<key>apiuri</key>
<value>http://vs.example.com:8080/API</value>

</ConfigurationPropertyDocument>

GET /configuration/properties/apiuri
Accept: text/plain

http://vs.example.com:8080/API

Create/modify configuration property
PUT /configuration/properties
Creates or updates a configuration property.
Status Codes
* 200 OK - The configuration property was created/modified successfully.
Accepts
* application/xml — ConfigurationPropertyDocument

Role _administrator

Example

PUT /configuration/properties

<ConfigurationPropertyDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<key>apiuri</key>
<value>http://127.0.0.1:18080/API/</value>

</ConfigurationPropertyDocument>

Create/modify configuration property
PUT /configuration/properties/ (key)
Creates or updates a configuration property.
Status Codes
* 200 OK - The configuration property was created/modified successfully.
Accepts
* text/plain — String value

Role _administrator

16.4. Configuration 263



Vidispine REST APl Documentation, Release 4.2.2

Example

PUT /configuration/properties/apiuri

http://127.0.0.1:18080/API/

Remove a configuration property
DELETE /configuration/properties/ (property-name)
Removes a configuration property.
Status Codes
* 200 OK - The configuration property was successfully deleted

Role _administrator

Example

DELETE /configuration/properties/example property

200 OK

16.5 Export locations

New in version 4.0.

It is possible to pre-define named export locations. When starting an export job, the location name can be passed as a
parameter, the files will then be exported to the URI associated with the export location.

16.5.1 Managing export locations
Listing available export locations
GET /export-location
List all defined export locations.
Produces
* application/xml, application/json — ExportLocationListDocument

Role _export

Creating/updating an export location
PUT /export-location/ (location-name)
Create a new export location, or if there already is one with that name, update it.
Accepts
* application/xml, application/json — ExportLocationDocument

Produces

264 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

* application/xml, application/json — ExportLocationDocument

Role _export

Example

Creating a new export location:

PUT /export-location/External_ FTP
Content-Type: application/xml

<ExportLocationDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>ftp://user:password@10.2.23.25/export/</uri>
</ExportLocationDocument>

Get information about an export location
GET /export-location/ (location-name)
Return information about the export location with the specified name.
Produces
« application/xml, application/json — ExportLocationListDocument

Role _export

Deleting an export location
DELETE /export-location/ (location-name)
Delete the export location with the specified name.

Role _export

16.5.2 Export location script
Get the export location script
GET /export-location/ (location-name) /script
Retrieves the script on an export location.
Status Codes
* 404 Not found — If the location has no script.

Produces text/plain

Role _export

Update the export location script
PUT /export-location/ (location-name) /script
Updates the script of an existing export location.
Accepts text/plain

Role _export

16.5. Export locations

265



Vidispine REST APl Documentation, Release 4.2.2

16.6 External identifiers

16.6.1 Managing external id namespaces
Retrieve all known namespaces
GET /external-id
Retrieves all known external id namespaces.
Produces
* application/xml, application/json — ExternalldentifierNamespaceListDocument

Role _administrator

Example

GET /external-id

<ExternalIdentifierNamespacelistDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<namespace>
<name>uuid</name>
<pattern> [A-Fa-f0-9]{8}\-[A-Fa-f0-9] {4} \-[A-Fa-£f0-9]{4}\-[A-Fa-f0-9]{4}\-[A-Fa-f0-9]{12}</patter:
</namespace>
</ExternalldentifierNamespaceListDocument>

Retrieve a specific namespace
GET /external-id/ (namespace-id)
Retrieves the namespace with the specified name.
Produces
« application/xml, application/json — ExternalldentifierNamespaceDocument

Role _administrator

Example

GET /external-id/uuid

<ExternalIdentifierNamespaceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<name>uuid</name>
<pattern>[A-Fa-f0-9] {8} \-[A-Fa—-f0-9] {4}\-[A-Fa-f0-9] {4}\-[A-Fa-f0-9]{4}\-[A-Fa-f0-9]{12}</pattern>
</ExternalldentifierNamespaceDocument>

Create or modify a namespace
PUT /external-id/ (namespace-id)
Creates or modifies a namespace with the specified name.
Accepts

* application/xml , application/json — ExternalldentifierNamespaceDocument

266 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Role _administrator

Example

PUT /external-id/uuid
Content-Type: application/xml

<ExternalIdentifierNamespaceDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<pattern> [A-Fa-f0-9] {8} \-[A-Fa-f0-9] {4} \-[A-Fa-f0-9]1{4}\-[A-Fa-f0-9]{4}\-[A-Fa-f0-9] {12} </patter:

</ExternalldentifierNamespaceDocument>

200 OK

Delete a namespace and all external ids in that namespace

DELETE /external-id/ (namespace-id)
Deletes the specified namespace together with all external ids that exist in that namespace.

Role _administrator

Example

DELETE /external-id/uuid

200 OK

16.6.2 Managing external ids

The current supported resources can be seen in the table below. These are referred to as
{external-id-resource} in the definitions below.

Type Path

Item /item/{item-id}/external-1d

Job /storage/{job-id}/external-id

Notification .../notification/{notification-id}/external-id

Storage /storage/{storage—-id}/external-id

Metadata-field | /metadata-field/{field-name}/external-id

Field-group /metadata-field/field-group/{field-group—name}/external-id

Retrieve all external ids for an entity
GET {external-id-resource}
Retrieves all external ids that are assigned to a particular entity.
Produces
* application/xml, application/json — ExternalldentifierListDocument

Role _external_id_read

16.6. External identifiers 267



Vidispine REST APl Documentation, Release 4.2.2

Example

GET /storage/VX-1l/external-id

<ExternalIdentifierListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>
<entityId>VX-1</entityId>
<entityType>Storage</entityType>
<namespace>uuid</namespace>
<externalIld>38eebf93-2ab7-463b-ba3a-b6217bb5bcad</externalld>
</id>
</ExternalIldentifierListDocument>

GET /storage/38eebf93-2ab7-463b-ba3a-b6217bb5bca9/external-id

<ExternalIdentifierListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>
<entityId>VX-1</entityId>
<entityType>Storage</entityType>
<namespace>uuid</namespace>
<externalId>38eebf93-2ab7-463b-ba3a-b6217bb5bcad9</externalld>
</id>
</ExternalldentifierListDocument>

Create a new external id

PUT {external-id-resourcel}/ (external-id)
Creates a new external id for the specified entity.

Role _external_id_write

Example

PUT /storage/VX-1l/external-id/38eebf93-2ab7-463b-ba3a-b6217bb5bca9
200 OK

PUT /storage/VX-1l/external-id/38eebf93-2ab7-463b-ba3a-b6217bb5bcad
400 An invalid parameter was entered

Context: external-id
Reason: That external id is already in use by VX-1.

Clear all external ids for an entity

DELETE {external-id-resource}
Clears all external identifiers that are registered with an entity.

Role _external_id_write

268 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Example

DELETE /storage/VX-1/external-id
200 OK
GET /storage/38eebf93-2ab7-463b-ba3a-b6217bb5bca9/external-id

404 A resource could not be found
Type: external-id
ID: uuid_38eebf93-2ab7-463b-ba3a-b6217bb5bca’

16.7 Groups and roles

16.7.1 Managing groups
List groups/roles
GET /group
Returns list of all groups.
Query Parameters
* first — Start returning groups from specified number. Default is 1, the beginning of the list.
* number — Return at most specified number of groups. Default is no limit.
Produces
* application/xml, application/json — GroupListDocument
* text/plain — CRLF-delimited list of group names
Role _group_read

Get group/role
GET /group/ (group-name)
Returns information about the specified group.
Produces
* application/xml, application/json — GroupDocument

Role _group_read

Get role status
GET /group/ (group-name) /role
Returns the role status of the specified group.
Produces
* text/plain — 1 if group is a role, O if group is a regular group

Role _group_read

16.7. Groups and roles 269



Vidispine REST APl Documentation, Release 4.2.2

Create a new group
PUT /group/ (groupname)
Creates a new group with the specified name.
Status Codes
* 200 OK - Group created.
* 409 Conflict — A group with that name already exists.

Role _group_write

Create and setup a new group

PUT /group/ (groupname)
Creates a new group with the specified name. Also any specified parent and child associations, users, metadata
and description will be added.

Status Codes

* 200 OK - Group created.

* 409 Conflict — A group with that name already exists.
Accepts

* application/xml, application/json — GroupDocument

Role _group_write

Delete a group
DELETE /group/ (groupname)
Deletes the group with the specified name.

Role _group_write

Search groups
PUT /group
Simple search of fields groupname, description and metadata.
Accepts
* application/xml, application/json — GroupListDocument
Produces

« application/xml, application/json — GroupSearchDocument

Example

PUT /group
Content-Type: application/xml

<GroupSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>

270 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

<name>groupname</name>
<value>vidi</value>
</field>
<field>
<name>key</name>
<value>value</value>
</field>
</GroupSearchDocument>

Note that keywords groupname and description are reserved to do search on groupname and description
fields

The boolean operators AND and OR are supported:

<GroupSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>groupname</name>
<value>vidi</value>
</field>
<field>
<name>description</name>
<value>vidispine</value>
</field>
<operator operation="OR">
<field>
<name>keyl</name>
<value>valuel</value>
</field>
<field>
<name>key2</name>
<value>value2</value>
</field>
</operator>
</GroupSearchDocument>

16.7.2 Group information

Get group description
GET /group/ (group-name) /description
Returns the descriptive text about the specified group.
Produces
* text/plain — Group description

Role _group_read

Change the description of a group
PUT /group/ (groupname) /description
Changes the description of a group.
Accepts
* text/plain — The new description.

Role _group_write

16.7. Groups and roles 271



Vidispine REST APl Documentation, Release 4.2.2

16.7.3 Group-to-group relations
Get parent groups to a group
GET /group/ (group-name) /parents
Returns groups that the specified group belongs to.
Produces
« application/xml, application/json — GroupListDocument

* text/plain — CRLF-delimeted list of Taubbed tuples of group name, group description
Role _group_read

Get child groups to a group
GET /group/ (group-name) /children
Returns groups that belongs to the specified group.
Produces
* application/xml, application/json — GroupListDocument
* text/plain — CRLF-delimeted list of Taubbed tuples of group name, group description

Role _group_read

Add a group to another group
PUT /group/ (groupname) /group/
child-groupname Creates parent-child relation between the two specified groups.

Role _group_write

Remove a group from another group
DELETE /group/ (groupname) /group/
child-groupname Removes the parent-child relation between the two specified groups.

Role _group_write

16.7.4 Group-to-user relations
Users belonging to group
GET /group/ (group-name) /users
Returns all users belonging to the group/role, directly or indirectly.
Produces
« application/xml, application/json — UserListDocument
* text/plain — CRLF-delimeted list of Tabbed tuples of user name, user real name

Role _group_read

272 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Add a user to a group

PUT /group/ (groupname) [user/
username Adds the specified user to the specified group.

Role _group_write

Remove a user from a group

DELETE /group/ (groupname) /user/
username Removes the specified user from the specified group.

Role _group_write

16.8 Imports

16.8.1 Importing an item

An item can be imported in two ways, either through supplying a URI or sending the data in the request body.

There is also a third automatic way, using Automatic import.

Import using a URI

POST /import

Starts a job that imports the file, located at the given URI, and creates an item. For more information about jobs,
see Jobs. Note that thumbnails and poster frames are only generated if a transcode takes place.

Query Parameters

uri — A URI to the file that will be imported. See also URI’s, URL’s, and Special Characters.
URL - A URL to the file that will be imported. (Deprecated since x.)
tag — An optional list of shape tags to use for transcoding.

original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

thumbnails —

— true (default) - Generate thumbnails as per defined by shape tag

— false - Disable thumbnail generation

thumbnailService — An optional identifier to which thumbnail resource that should be used.
createPosters — An optional list of time codes to use for creating posters.
overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
requireFastStart —

— true (default) - Try to put the index tables (header) in front of the file.

16.8. Imports

273



Vidispine REST APl Documentation, Release 4.2.2

— false - Put header at end of file.
* fastStartLength — Optional estimated duration of the clip in seconds.
* storageld — Optional identifier of storage where essence file is to be stored.
* filename — The filename to be stored as original filename. Optional.

* growing —

— true - Specifies that the input file is still written to, so enables growing file support.

— false (default) - No growing file handling of import file.

» xmpfile — An optional URI to a sidecar XMP metadata file.

* sidecar — Optional URISs or file ids of any sidecar files to import to the item. (New in 4.0.)

e no-transcode —

— true - Will disable transcoding even if the t ags parameter is set. Rather, the specified

tag will be used to determine cropping, scaling etc. of thumbnails.
— false (default) - Normal transcode.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

» jobmetadata — Additional information for the job task. See Special job metadata values

Accepts

« application/xml, application/json — MetadataDocument, initial metadata that is given to

the imported item

Produces

« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Example

POST /import?uri=http://example.com/video.avi HTTP/1.1
Accept: application/xml
Content-type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INF" start="-INEF">
<field>
<name>title</name>
<value>This is an imported item!</value>
</field>
</timespan>
</MetadataDocument>

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-80</jobId>
<status>READY</status>
<type>IMPORT</type>

</JobDocument >

274 Chapter 16

. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Import using the request body
POST /import/raw
Starts a job that reads the raw data from the request body, generates a file, and imports the file.
Query Parameters
* tag — An optional list of shape tags to use for transcoding.

* original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

* thumbnails -

— true (default) - Generate thumbnails as per defined by shape tag

— false - Disable thumbnail generation
* thumbnailService — An optional identifier to which thumbnail resource that should be used.
* createPosters — An optional list of fime codes to use for creating posters.

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

* transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

* storageld — Optional identifier of storage where essence file is to be stored.
* overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.
— false - Put header at end of file.
* fastStartLength — Optional estimated duration of the clip in seconds.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
 jobmetadata — Additional information for the job task. See Special job metadata values
* filename — The filename to be stored as original filename. Optional.
Status Codes
* 400 — If the amount of data received does not match the given Content-Length header.
New in version 4.2.3.
Request Headers
* index — Offset (in bytes) of the full file for where the first byte of this transfer is located.
* size — The total size of the full file.

Accepts

16.8. Imports 275



Vidispine REST APl Documentation, Release 4.2.2

« application/octet-stream — The raw data.
Produces

« application/xml, application/json — A JobDocument that describes the import job, or no
content if the transfer is not finished.

Role _import

Semantics

There are two modes of operation for this type of import. The most simple is to transfer the entire file and then the
header parameters can be ignored. The other is to transfer the file over multiple requests, then the header parameters
are required. If the latter mode is used, then the job will not start until the entire file is transferred.

Note that thumbnails and poster frames are only generated if a transcode takes place.

Tip: Managing transfers

Transfers can be managed, see Transfers.

Example: transferring the entire file

POST /import/raw HTTP/1.1
Content-Type: application/octet-stream

<the entire file data>

Example: transferring a file using multiple requests

Assume a file that is 1000 bytes. This file can be sent using three requests, where one request sends data [800, 1000],
another sends data [0, 300] and the last request sends data [300, 800].

POST /import/raw?transferId=mytransfer HTTP/1.1
Content-Type: application/octet-stream

size: 1000

index: 800

<200 bytes of file data, starting at byte 800>

POST /import/raw?transferId=mytransfer HTTP/1.1
Content-Type: application/octet-stream

size: 1000

index: 0

<300 bytes of file data, starting at byte 0>
POST /import/raw?transferId=mytransfer HTTP/1.1
Content-Type: application/octet-stream

size: 1000

index: 300

<500 bytes of file data, starting at byte 300>

The last request that finishes will start the job and receive the corresponding job document.

276 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Import using a passkey
POST /import/raw-passkey
Create a job and generates a passkey that can later be used to import an item without being authenticated.
Query Parameters
* tag — An optional list of shape tags to use for transcoding.

* original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

* thumbnails -

— true (default) - Generate thumbnails as per defined by shape tag

— false - Disable thumbnail generation
* thumbnailService — An optional identifier to which thumbnail resource that should be used.
* createPosters — An optional list of fime codes to use for creating posters.

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

* transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

¢ overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.
— false - Put header at end of file.
* fastStartLength — Optional estimated duration of the clip in seconds.
* filename — The filename to be stored as original filename. Optional.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
 jobmetadata — Additional information for the job task. See Special job metadata values
* settings — Pre-configured import settings. See Import settings
Status Codes
* 400 — If the amount of data received does not match the given Content-Length header.
New in version 4.2.3.
Accepts

* application/xml, application/json — MetadataDocument, initial metadata that is given to
the imported item

Produces

16.8. Imports 277



Vidispine REST APl Documentation, Release 4.2.2

« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Example

POST /import/raw-passkey?transferId=mytransfer HTTP/1.1
Accept: application/xml
Content-type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INEF" start="-INE">
<field>
<name>title</name>
<value>This is an imported item!</value>
</field>
</timespan>
</MetadataDocument>

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-102</jobId>
<status>WAITING</status>
<type>RAW_IMPORT</type>
<data>
<key>passkey</key>
<value>91df2b2fe74957¢cc7331d59a59%9a88cdc14df460dbb4d62c20287399030092134</value>
</data>
</JobDocument >

Importing without authentication

Note: Note that this request uses http://server:port/APInoauth/... instead of the usual
http://server:port/API/...

POST /import/raw
Imports the item and starts the job.

Query Parameters
¢ overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.

* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.
— false - Put header at end of file.

* fastStartLength — Optional estimated duration of the clip in seconds.

* filename — The filename to be stored as original filename. Optional.

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

278 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

* priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values
* settings — Pre-configured import settings. See Import settings

* tag — An optional list of shape tags to use for transcoding.

* original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

* thumbnails —

— true (default) - Generate thumbnails as per defined by shape tag

— false - Disable thumbnail generation
* thumbnailService — An optional identifier to which thumbnail resource that should be used.
* createPosters — An optional list of time codes to use for creating posters.

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

* transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

* storageld — Optional identifier of storage where essence file is to be stored.
* overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.
— false - Put header at end of file.
* fastStartLength — Optional estimated duration of the clip in seconds.
* filename — The filename to be stored as original filename. Optional.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
» jobmetadata — Additional information for the job task. See Special job metadata values
* settings — Pre-configured import settings. See Import settings
Status Codes
* 400 — If the amount of data received does not match the given Content-Length header.
New in version 4.2.3.
Accepts

* application/xml, application/json — MetadataDocument, initial metadata that is given to
the imported item

Produces

16.8. Imports 279



Vidispine REST APl Documentation, Release 4.2.2

« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Example

POST /import/raw?transferId=mytransfer&passkey=91df2b2fe74957cc7331d59a59a88cdc14df460dbb4d62c202873!
Accept: application/xml
Content-type: application/octet-stream

<file data>

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-102</jobId>
<user>admin</user>
<started>2010-08-11T09:57:29.5754+02:00</started>
<status>READY</status>
<type>RAW_IMPORT</type>
<priority>MEDIUM</priority>

</JobDocument>

16.8.2 Placeholder imports

A placeholder import is an import where the item and a shape are created before any file is transferred. Once all the
specified files have been transferred, an import job will start.

Create a placeholder item
POST /import/placeholder
Creates an empty item and a shape with components matching the given parameters.
Query Parameters
* container — Integer, the number of files that contain container components.
* audio — Integer, the number of files that contain audio components.
* video — Integer, the number of files that contain video components.
* type — Optional string.
- image-sequence- Image sequence.
- dpx - DPX sequence.
* frameDuration — Optional 7ime durations for each image in the sequence (optional).
* no-transcode —

— true - Will disable transcoding even if the t ags parameter is set. Rather, the specified
tag will be used to determine cropping, scaling etc. of thumbnails.

— false (default) - Normal transcode.
Accepts

« application/xml, application/json — MetadataDocument, initial metadata that is given to
the imported item

Produces

280 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

text/plain — The id of the item

application/xml, application/json — ltemDocument

Role _import

Import to a placeholder item

POST /import/placeholder/ (item-id) /[container, audio, video]

Imports the file and extracts component data based on what type is specified (container, audio, video).

transcoding will take place until all files have been imported.

Query Parameters

uri — A URI to the file that will be imported. See also URI’s, URL’s, and Special Characters.
Must be specified unless £i1leId is specified.

fileId — The id of the file that contains the essence. Must be specified unless uri is specified.
tag — An optional list of shape tags to use for transcoding.

original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.

requireFastStart —

— true (default) - Try to put the index tables (header) in front of the file.

— false - Put header at end of file.

fastStartLength — Optional estimated duration of the clip in seconds.

growing —

— true - Specifies that the input file is still written to, so enables growing file support.
— false (default) - No growing file handling of import file.

notification — See Notifications . (Optional)

notificationData — See Norifications . (Optional)

priority — The priority to assign to the job. Default is MEDIUM .

jobmetadata — Additional information for the job task. See Special job metadata values
settings — Pre-configured import settings. See Import settings

index — The component index (track) of new component.

Produces

application/xml, application/json — A JobDocument that describes the import job.

Role _import

16.8. Imports

281



Vidispine REST APl Documentation, Release 4.2.2

Import to a placeholder item using the request body

POST /import/placeholder/ (item-id) /[container, audio,video]/raw
Imports the file and extracts component data based on what type is specified (container, audio, video). No
transcoding will take place until all files have been imported.

Query Parameters
* tag — An optional list of shape tags to use for transcoding.

* original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

¢ transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

* storageld — Optional identifier of storage where essence file is to be stored.
* overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.
— false - Put header at end of file.
* fastStartLength — Optional estimated duration of the clip in seconds.
* filename — The filename to be stored as original filename. Optional.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
* jobmetadata — Additional information for the job task. See Special job metadata values
* settings — Pre-configured import settings. See Import settings
Status Codes
* 400 — If the amount of data received does not match the given Content-Length header.
New in version 4.2.3.
Request Headers
* index — Offset (in bytes) of the full file for where the first byte of this transfer is located.
* size — The total size of the full file.
Accepts
« application/octet-stream — The raw data.

Produces

282 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

« application/xml, application/json — A JobDocument that describes the import job, or no
content if the transfer is not finished.

Role _import

Example

Creating a placeholder item that consists of one file.

POST /import/placeholder?container=1
Content-Type: application/xml

<MetadataDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<timespan end="+INE" start="-INF">
<field>
<name>title</name>
<value>My placeholder import!</value>
</field>
</timespan>
</MetadataDocument>

VX-1134

POST /import/placeholder/VX-1134/container?tag=lowres&uri=http://example.com/video.avi
Content-Type: application/xml

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-1299</jobId>
<user>admin</user>
<started>2010-05-07T16:12:10.023+02:00</started>
<status>READY</status>
<type>PLACEHOLDER_IMPORT</type>
<priority>MEDIUM</priority>

</JobDocument >

Import to a placeholder item in bulk

POST /import/placeholder/ (item-id)
Imports the files and extracts component data based on what type is specified (container, audio, video). No
transcoding will take place until all files have been imported.

Query Parameters
* tag — An optional list of shape tags to use for transcoding.

* original — An optional tag, if specified it should be one of the tags specified in the tag
parameter. Specifies that the original shape tag will be reset to the shape created to this tag.

e overrideFastStart —

— true (default) - Use transcoder’s estimate of the duration for allocating header space in
MOV files and similar files.

— false - Do not use the transcoder’s estimate of the duration.
* requireFastStart —
— true (default) - Try to put the index tables (header) in front of the file.

— false - Put header at end of file.

16.8. Imports 283



Vidispine REST APl Documentation, Release 4.2.2

* fastStartLength — Optional estimated duration of the clip in seconds.

* storageld — Optional identifier of storage where essence file is to be stored.

* growing —
— true - Specifies that the input file is still written to, so enables growing file support.
— false (default) - No growing file handling of import file.

* settings — Pre-configured import settings. See Import settings

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

» jobmetadata — Additional information for the job task. See Special job metadata values

Accepts

« application/xml, application/json — A PlaceholderImportRequestDocument describing the
files to import.

Produces
« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Adopt stand-alone files
POST /import/placeholder/ (item-id) /container/adopt/
file-id Adopt the file as a container component in a placeholder item.

Role _import

16.8.3 Importing sidecar files
Import a sidecar file
POST /import/sidecar/ (item-id)
Starts a job that imports the sidecar file, located at the given URL, to the specified item.
Query Parameters
* sidecar — Either the file id of the sidecar file or a URL for locating it.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
* jobmetadata — Additional information for the job task. See Special job metadata values
Produces
« application/xml, application/json — A JobDocument that describes the import job.

Role _import

284 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

POST /import/sidecar/ (item-id) /raw
Starts a job that imports the sidecar file as HTTP request body. The sidecar file will be saved in one of the
Vidispine storages.

Query Parameters

» storageld — The id of the storage that the sidecar file will be saved.

* notification — See Noftifications . (Optional)

* notificationData — See Notifications . (Optional)

e priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values
Produces

« application/xml, application/json — A JobDocument that describes the import job.
Status Codes

* 400 — If the amount of data received does not match the given Content-Length header.

New in version 4.2.3.

Role _import

16.9 Import settings

16.9.1 Managing import settings

Create a new settings profile
POST /import/settings
Creates a new settings profile with the given settings.
Accepts

« application/xml, application/json — An ImportSettingsDocument containing the settings
profile.

Produces

 application/xml, application/json — An ImportSettingsDocument containing the the set-
tings profile together with its id.

Role _import

Example

POST /import/settings
Content-Type: application/xml

<ImportSettingsDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<access>
<permission>READ</permission>
<user>myuser</user>
</access>
</ImportSettingsDocument>

16.9. Import settings 285



Vidispine REST APl Documentation, Release 4.2.2

<ImportSettingsDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VxX-4</id>
<access>
<permission>READ</permission>
<user>myuser</user>
</access>
</ImportSettingsDocument>

List the ids of all profiles
GET /import/settings
Retrieves a list of all profiles.
Produces
* application/xml, application/json — A URIListDocument containing the ids of all profiles.

Role _import

Example

GET /import/settings

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>Vvx-1</uri>
<uri>VxX-2</uri>
<uri>vx-3</uri>
<uri>Vx-4</uri>
</URIListDocument>

Retrieve a specific settings profile

GET /import/settings/ (settings-id)
Retrieves the settings specified by a certain profile.

Produces

« application/xml, application/json — An ImportSettingsDocument containing the settings of
the profile.

Role _import

Example

GET /import/settings/VX-4

<ImportSettingsDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>VxX-4</id>
<access>
<permission>READ</permission>
<user>myuser</user>
</access>
</ImportSettingsDocument>

286 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Change the settings of a profile

PUT /import/settings/ (settings-id)
Changes the settings of the specified profile.

Accepts
* application/xml, application/json — An ImportSettingsDocument with the new settings.

Role _import

Example

PUT /import/settings/VX-4
Content-Type: application/xml

<ImportSettingsDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<access>
<permission>WRITE</permission>
<user>myuser</user>
</access>
</ImportSettingsDocument>

200 OK

Delete a profile

DELETE /import/settings/ (settings-id)
Deletes the profile with specified id.

Role _import

Example

DELETE /import/settings/VX-4

200 OK

16.10 Items

16.10.1 Exports

An item export is the process of copying a file from storage to a location accessible by the system.
Create export jobs
Start an export job for a single item

POST /item/ (item-id) /export
Creates a new export job that will copy a file to a remote location.

16.10. Items 287



Vidispine REST APl Documentation, Release 4.2.2

Query Parameters
 uri — A URI to the destination of the file.
* locationName — (New in 4.0.) The name of an Export Location (see Export locations )

» tag — Finds a shape with the specified tag and uses that for export. If not specified, the
system will attempt to use the original shape.

* metadata —
— true - Metadata will also be exported to side-car XML file.
— false (default) - No metadata is exported.
* projection — Defines the projection to use when exporting the metadata (optional).
* start — Defines a start 7ime codes for the media (optional).
* end — Defines an end Time codes for the media (optional).
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
 jobmetadata — Additional information for the job task. See Special job metadata values

* useOriginalFilename — If set to true, the file(s) will be exported with their original filename
if available.

* allowMissing —
— true (default) - Job will be started and the missing files will be ignored.

— false - Job will fail if there are missing files and the files could not be generated by
transcoding. A shape tag should be specified.

Produces-xml-json JobDocument

Role _export

Semantics Creates a new export job that will copy a file to a remote location. A shape tag can be specified to decide
which shape that will be exported. If the URI ends with a “/” the URI is assumed to describe a folder and the file will
retain its existing filename. Otherwise it is assumed that the URI describes a file and that filename will be used.

Note: FTP active mode
New in version 4.1.2.
For FTP exports, active mode can be forced by adding ?passive=false to the FTP URL. To set the client side

ports used in active mode, set the configuration property ftpAct iveModePortRange, the value should be a range,
e.g. 42100-42200. To set the client IP used in active mode, set the configuration property ftpActiveModeIp.

Note: XMP rewrite

New in version 4.1.4.

By using the jobmetadata query parameter with rewriteXMP=false (remember to URL encode the =), any
XMP metadata in the source file will not be updated with the XMP metadata of the item.

288 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Example Create a new export job that transfers the file of a shape with the tag f1v.

POST /item/VX-250/export?tag=flveuri=file:/home/user/video/myvideo.flv

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-1293</jobId>
<user>admin</user>
<started>2010-05-07T14:05:51.826+02:00</started>
<status>READY</status>
<type>EXPORT</type>
<priority>MEDIUM</priority>

</JobDocument>

Start an export job for a single shape

New in version 4.1.2.

POST /item/ (item-id) /shape/
shape-id /export Create export job for shape.

Query Parameters

uri — A URI to the destination of the file.
locationName — (New in 4.0.) The name of an Export Location (see Export locations )

tag — Finds a shape with the specified tag and uses that for export. If not specified, the
system will attempt to use the original shape.

metadata —

— true - Metadata will also be exported to side-car XML file.

— false (default) - No metadata is exported.

projection — Defines the projection to use when exporting the metadata (optional).

start — Defines a start 7ime codes for the media (optional).

end — Defines an end 7ime codes for the media (optional).

notification — See Notifications . (Optional)

notificationData — See Norifications . (Optional)

priority — The priority to assign to the job. Default is MEDIUM .

jobmetadata — Additional information for the job task. See Special job metadata values

useOriginalFilename — If set to true, the file(s) will be exported with their original filename
if available.

allowMissing —
— true (default) - Job will be started and the missing files will be ignored.

— false - Job won’t be started if there are missing files.

Produces-xml-json JobDocument

Role _export

16.10. Items

289



Vidispine REST APl Documentation, Release 4.2.2

Semantics Creates a new export job that will copy a file from the specified shape to a remote location. If the URI
ends with a “/” the URI is assumed to describe a folder and the file will retain its existing filename. Otherwise it is
assumed that the URI describes a file and that filename will be used.

Start an export job for a collection or a library

POST /collection/ (collection-id) /export
POST /library/ (library-id) /export
Create export job for collection or library.

Query Parameters
* uri — A URI to the destination of the file.
* locationName — (New in 4.0.) The name of an Export Location (see Export locations )

* tag — Finds a shape with the specified tag and uses that for export. If not specified, the
system will attempt to use the original shape.

* metadata —
— true - Metadata will also be exported to side-car XML file.
— false (default) - No metadata is exported.
* projection — Defines the projection to use when exporting the metadata (optional).
* start — Defines a start 7ime codes for the media (optional).
* end — Defines an end Time codes for the media (optional).
* notification — See Noftifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
* jobmetadata — Additional information for the job task. See Special job metadata values

* useOriginalFilename — If set to true, the file(s) will be exported with their original filename
if available.

Produces-xml-json JobDocument

Role _export

Semantics Creates a new export job that will copy all matching files in the collection/library to a remote location. A
shape tag can be specified to decide which shapes that will be exported. The files will retain their original names and
the URI should therefore point to the folder where the files should be placed.

Example Create a new export job that transfers files in a certain collection that has shapes with the tag £1v.

POST /collection/VX-10/export?tag=flv&uri=file:/home/user/video/

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-1334</jobId>
<user>admin</user>
<started>2010-05-24T14:53:12.732402:00</started>
<status>READY</status>
<type>EXPORT</type>

290 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

<priority>MEDIUM</priority>
</JobDocument >

16.10.2 ltems
Managing items
Retrieve a list of all items

GET /item
Content Parameters See Retrieving item information
Query Parameters
* result —
— 1list (default) - Return a list of items.
— library - Create a library with the matching items.

°q — XML/ISON, ItemSearchDocument. Only with GET
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3).

* count —
— true (default) - Return hits in result.
— false - Do not return hits in result, in order to produce results faster.
Matrix Parameters
* library — Restricts search to within library, /dentifiers. Default is «, all items.

* first — Integer, from resulting list of items, start return list from specified offset. Default is
1, start return list from beginning.

* number — Integer, set a limit on maximum number of hits. Default 100.

* libraryld — If set, the library identified by this id will be used instead of creating a new
library.

» autoRefresh — See Self-refreshing libraries. Defaults to false.

* updateMode — See Self-refreshing libraries. Defaults to MERGE.

» updateFrequency — See Self-refreshing libraries. Defaults to no periodic updates.
Produces

* application/xml, application/json — ItemListDocument

¢ text/plain — CRLF-delimited list of ids or URLs

Role _item_search

Semantics Returns a list of all items. This request is the same as performing an empty search.

16.10. Items 291


http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Vidispine REST APl Documentation, Release 4.2.2

Get information about a single item

GET /item/ (item-id)
Matrix Parameters
* starttc —
— true - Interval is given relative to start timecode of item.
— false (default) - Interval is O-based.
Query Parameters

* noauth-url — Whether to return thumbnail URLSs not requiring authentication. Default value
is false

¢ baseURI — Which base URI to use for the thumbnail URLs.
Produces

* application/xml, application/json — ItemDocument

Semantics Returns information about a single item.

Delete a single item

Deleting an item means removing the item’s id, its metadata, shapes, and physical files.
DELETE /item/ (item-id)
Query Parameters

» keepShapeTagMedia — Optional comma-separated list of shape tags whose files will not
be deleted.

* keepShapeTagStorage — Optional comma-separated list of storage ids whose files will not
be deleted.

Semantics Marks the item as being deleted, meaning it will not be returned in search results. The actual removement
from the database is done approximately once every minute. Also, all files associated with the item is marked as
TO_BE_DELETED, meaning they will be deleted by the storage supervisor, but not sooner than all jobs involving the
actual file has finished.

By specifying keepShapeTagMedia and/or keepShapeTagStorage, the files associated with the item is not
deleted, but simply unassociated with the item.

If only keepShapeTagMedia is given, all files belonging to shapes of the item with any of the given shape tags are
preserved.

Ifonly keepShapeTagStorage is given, all files belonging to the item residing on the given storages are preserved.
If both keepShapeTagMedia and keepShapeTagStorage is given, all files which both belongs to the specified
shapes and storages are preserved.

New in version 4.3.2.

If any of keepShapeTagMedia or keepShapeTagStorage contains a value , then no files will be removed.

292 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Search items

PUT /item
Content Parameters See Retrieving item information
Query Parameters
* result —
— 1list (default) - Return a list of items.
— library - Create a library with the matching items.

°q - XML/JSON, ItemSearchDocument. Only with GET
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3).

* count —
— true (default) - Return hits in result.
— false - Do not return hits in result, in order to produce results faster.
Matrix Parameters
* library — Restricts search to within library, /dentifiers. Default is =, all items.

* first — Integer, from resulting list of items, start return list from specified offset. Default is
1, start return list from beginning.

* number — Integer, set a limit on maximum number of hits. Default 100.

e libraryld — If set, the library identified by this id will be used instead of creating a new
library.

* autoRefresh — See Self-refreshing libraries. Defaults to false.

» updateMode — See Self-refreshing libraries. Defaults to MERGE.

» updateFrequency — See Self-refreshing libraries. Defaults to no periodic updates.
Produces

« application/xml, application/json — ItemListDocument

* text/plain — CRLF-delimited list of ids or URLs

Role _item_search

Semantics

Performs an item search. If the result query parameter is set to library a new library is created, which can be used to
further refine the search, using the library parameter.

Note that searching can also be  performed by using the HTTP method PUT
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6) using the same syntax, except for the parame-
ter g is omitted and the ItemSearchDocument is sent in the body of the request.

Tip: There is a limit on how many items that can be returned for each call to this method. To get all items, iterate the
calls, or even better in a batch scenario, start a job using Listing items in batch to get all items at once.

16.10. Items 293


http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

Vidispine REST APl Documentation, Release 4.2.2

Example

GET /item?result=library
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>product_category</name>
<value>tv</value>
</field>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<library>VXx1233</library>
<item>VY-1233</item>
<item>VY-1234</item>
<item>VX-7888</item>
</ItemListDocument>

PUT /item;library=VXx1233
Content-Type: application/xml

<ItemSearchDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<field>
<name>created</name>
<range>
<value>2014-05-30T00:00:00+0200</value>
<value>2014-06-03T07:30:00+0200</value>
</range>
<field>
</ItemSearchDocument>

<ItemListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<library>VXx1234</library>
<item>VY-1233</item>
<item>VX-7888</item>

</ItemListDocument>

Search history

Retrieve search history

GET /item/history
Retrieves a list of searches made by a particular user, including “item search” and “Item and collection search”.
The results are ordered according to timestamp, with the latest searches being first. Duplicate queries will not
be retrieved.

Query Parameters
* start — Optional ISO8601 date. If set, only searches made after this date will be retrieved.

* maxResults — Integer, the maximum number of searches that will be retrieved. The value
must be between 1 and 50, default is 10.

* username — The name of the user that has performed the searched. If not specified, the user
performing the request will be selected.

Produces

294 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

« application/xml, application/json — SearchHistoryListDocument.

Role _item_search

Re-index item
PUT /item/ (item-id) /re—-index
Queues a single item for re-index.

See Re-indexing metadata if you wish to reindex all items in the system.

Listing items in batch

Creating an item list job

POST /item/list
Starts a new job that goes through all the items available to the user/group and outputs a file to the supplied URL.

If no user and no group is supplied, all items will be retrieved. The output format depends on the specified
parameter, if set to XML an ItemListDocument will be produced. Furthermore if an XSLT is given the /temList-
Document will be transformed.

Query Parameters

* destinationUri — The URI to output the CSV file to.

* username — Filter items according to the access of the specified user.

» groupname — Filter items according to the access of the specified group.

* field — A comma-separated list of metadata fields to include in the result.

* outputFormat — Specifies the output format. Valid values are xm1 (default) and csv.

 data — Specifies any additional data that should be included with the metadata fields.

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

» jobmetadata — Additional information for the job task. See Special job metadata values
Accepts

* application/xslt — An optional XSLT capable of transforming /temListDocument.
Produces

« application/xml, application/json — JobDocument.

Role _administrator

Example

POST /item/list?field=title,durationSeconds&username=admin&destinationUri=file:/home/user/output.csv:
Content-Type: application/xml

<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<jobId>VX-64</jobId>
<user>admin</user>

16.10. Items 295



Vidispine REST APl Documentation, Release 4.2.2

<started>2010-11-29T11:12:55.768+01:00</started>
<status>READY</status>
<type>LIST_ITEMS</type>
<priority>MEDIUM</priority>

</JobDocument >

$ cat /home/user/output.csv

"itemId", "format","fileSize", "downloads", "metadataField-title", "metadataField-durationSeconds"
"VX722", llmxf", "lOOOOOOO", lllll, "ll, lllS0.0"

"VX_18", "mp3,aaC", "5876698,4253659"’ "O", "H’ "212‘242695"

"VX-12","f1lv","23939202","5","This is ""the"" title.","142.124698"

"in8", "flv", ||5684452"’ "3", ll"’ l|12.412487"

Parent collections

List collections that contain an item

GET /item/ (item-id) /collections
Produces

« application/xml, application/json — URIListDocument containing the collection ID of all
collections that includes the item, and that the calling user has read access to.

Role _item_read

Example
GET /item/VX-94/collections

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>Vvx-23</uri>
<uri>vVx-64</uri>

</URIListDocument>

16.10.3 Retrieving item information

Item content can be retrieved from different resources, the query parameters used are the same for the different re-
sources. Below a table of the different supported resources can be seen.

Name BASE_PATH

Search /item, /search

Specificitems | /item/{item-id}

Libraries /library/{library-id}

Collections /collection/{collection—-id}/item

Get item information

By using a content parameter, much information can be gathered in one single call to the APL

296 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Get information

GET {item—-content-resource}
Retrieves the types of content that are specified in content. If URIs are included then the parameters type
or tag needs to be set.

Query Parameters

* content — Comma-separated list of the types of content to retrieve, possible values
are metadata, uri, shape, poster, thumbnail, access, merged-access,
external.

* interval — A metadata parameter, see Ger metadata.
* field — A metadata parameter, see Get metadata.

* group — A metadata parameter, see Get metadata.

* language — A metadata parameter, see Get metadata.
» samplerate — A metadata parameter, see Get metadata.
* track — A metadata parameter, see Get metadata.

* terse — A metadata parameter, see Get metadata.

* include — A metadata parameter, see Get metadata.

* type — A URI parameter, see Get item URI.

» tag — A URI parameter, see Get item URI.

* scheme — A URI parameter, see Get item URI.

* closedFiles — A URI parameter, see Get item URI.

¢ noauth-url — If true, thumbnail URIs that do not need authentication are returned. If
false (default), normal thumbnail URIs are returned.

* defaultValue — A metadata parameter, see Ger metadata.

* methodType — Optional type of storage method. When returning URIs, only use methods
of this type. See Storages.

* methodMetadata — Optional metadata used with storage method. See Srorages.

* version — Optional integer, specifying which essence version to return for shapes. If special
value all, display all versions. If special value latest (default), display latest version of
shapes.

* revision — Optional revision, specifying which metadata to display. Only used if requesting
a single item or collection.

Produces

* application/xml, application/json — ItemDocument
Role _metadata_read
Role _thumbnail_read

Role _item_uri

16.10. Items 297



Vidispine REST APl Documentation, Release 4.2.2

Example Retrieving terse metadata and thumbnails for an item.

GET /API/item/VX-123/?content=metadata,thumbnail&terse=yes

<ItemDocument id="VX-123">
<thumbnails>
<uri>http://example.com/API/thumbnail/VX-1/VxX-123/0@1000000</uri>
<uri>http://example.com/API/thumbnail /VX-1/VX-123/1000000@1000000</uri>
<uri>http://example.com/API/thumbnail/VX-1/Vx-123/2000000@1000000</uri>
</thumbnails>
<terse>
<durationSeconds end="+INF" start="-INF">2.04</durationSeconds>
<durationTimeCode end="+INF" start="-INEF">2040000@1000000</durationTimeCode>
<field A end="7" start="3">ABC</field A>
<title end="+INF" start="-INF">This is an imported item!</title>
<user end="+INF" start="-INF">testUser</user>
</terse>
</ItemDocument>

Get item content in the search result

The parameters above can also be used when searching (Search). Note that only content the user has sufficient per-
missions for will be retrieved.

Example Retrieving the URISs to all AVI containers that can be accessed either by HTTP or FTP for all items.

GET /API/item/?content=uri&type=avi&scheme=http, ftp

<ItemListDocument>
<item id="VX-123">

<files>
<uri>ftp://example.com/VX-123_VX-2189.avi</uri>

</files>

<timespan start="-INF" end="+INF"/>
</item>
<item id="VX-124">

<files/>

<timespan start="-INF" end="+INF"/>
</item>
<item id="VX-125">

<files>

<uri>http://example.com/VX-125_VX-3180.avi</uri>
<uri>ftp://example.com/VX-125_VX-3180.avi</uri>
</files>
<timespan start="-INF" end="+INE"/>
</item>
</ItemListDocument>

Retrieving URIs to the content of an item

The URI retrieval method is a scaled-down version of the Ger information method above.

298 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Get item URI

GET /item/ (item-id) /uri
Retrieves the URI to any container contained in the item that matches the specified type or the files contained in
a shape that matches the given tags.

Query Parameters
* type — Optional comma-separated list of format types (container format) to return.
* tag — Optional comma-separated list of shape tags to return. See Shape tags.
* scheme — Optional URI scheme to return, e.g. ftp.
* closedFiles —
— true (default) - Return only URISs that point to closed files.
— false - Return all URIs.
Produces
« application/xml, application/json — URIListDocument

Role _item_uri

Example

GET /item/VX-123/uri?type=avi&tag=lowres
Accept: application/xml

<URIListDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<uri>http://example.com/VX-123_VX-5003.avi</uri>
<uri>ftp://user:password@example.com/VX-123_VX-5003.avi</uri>
</URIListDocument>

16.10.4 Iltem locks

Items can be locked by users to temporarily prevent access from other users. This can be used to prevent users from
working with stale and conflicting data. Locks should not be seen as an alternative to access control, as any user that
has write access to an item can remove the locks.

If any user attempts to access an item that is locked by another user, HTTP status code 409 Conflict
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10) will be returned. For example:

HTTP/1.1 409 Operation would lead to conflict
Context: lock

ID: VX-123

Reason: That entity is locked by another user.
Value: the-name-of-the-other-user

Managing locks

All locks are associated with an expiration date and will be removed after they expire.

16.10. Items 299


http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Vidispine REST APl Documentation, Release 4.2.2

Create a lock

POST /item/ (item-id) /lock
Creates a new lock for the item with an expiration date. The expiration date is the sum of the timestamp and the
duration. If no timestamp and no duration is given, the expiration date will be set to 24 hours forward in time.

Query Parameters
* timestamp — An ISO 8601 compatible timestamp ( optional ). Defaults to the current time.
* duration — An ISO 8601 compatible duration ( optional ). Defaults to zero.
Status Codes
* 200 OK - The lock was created.
* 409 Conflict — Some other user already holds a lock on that item.

Role _lock_write

Example Create a lock for a specific timestamp:

POST /item/VX-123/lock?timestamp=2010-08-20T15:00:00+02:00
200 OK

Create a lock for 3 hours:

POST /item/VX-123/lock?duration=PT3H

200 OK

Retrieve information about a lock

GET /item/ (item-id) /lock
Retrieves information about the expiration date and which user that holds the lock.

Status Codes

* 404 Not Found - Either the item or the lock could not be found.
Produces

* application/xml, application/json — LockDocument

Role _lock_read

Example

GET /item/VX-123/lock

<LockDocument xmlns="http://xml.vidispine.com/schema/vidispine">
<id>Vx-123</id>
<user>admin</user>
<expires>2010-08-20T15:00:00.000+02:00</expires>
</LockDocument>

300 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Remove a lock

DELETE /item/ (item-id) /lock
Removes the lock for the item.

Status Codes
* 200 OK — The lock was removed.

Role _lock write

Example
DELETE /item/VX-123/lock

200 OK

Extend the expiration date of a lock

PUT /item/ (item-id) /lock
Sets a new expiration date for the lock. The expiration date is the sum of the timestamp and the duration. If no
timestamp and no duration is given, the expiration date will be set to 24 hours forward in time.

Query Parameters
* timestamp — An ISO 8601 compatible timestamp ( optional ). Defaults to the current time.
* duration — An ISO 8601 compatible duration ( optional ). Defaults to zero.

Status Codes
* 200 OK - The lock was extended.

Role _lock_write

Example
POST /item/VX-123/lock?timestamp=2010-08-20T16:00:00+02:00

200 OK

16.10.5 ltem-to-item relations

This section describes relations between items. The relation can be used to find ancestors, derived items, or simply
loosely related items.

Type of relations

Relations

* can be directional or undirectional. In a directional relation, one item is the source and another item is the target.
In an undirectional relation, the two items are treated equally

¢ are manually built using the API or created automatically. An example of automatically built relations is the
timeline conform method, which automatically creates directed relations

* have metadata as key-value pairs. One key-value pair which is always present is the t ype key, which describes
the reason of the relationship.

16.10. Items 301



Vidispine REST APl Documentation, Release 4.2.2

Automatically generated relations
Item-to-item relations are automatically generated by timeline conform actions. These relations are directional from
source item(s) to target item. The relations have the following tags:

¢ key=conform

e conform-job= { conform-job }

Managing item relations

Get list of item relations

GET /item/ (id) /relation
Returns a list of relations that matches the search criteria. Item id can be an /dentifiers, that is libraries can be
used.

Query Parameters
* direction —

— U - Only return undirectional relations where id is part of.

S - Only return directional relations where id is the source item.

T - Only return directional relations where id is the target item.

D - Only return directional relations where id is the source or target item.

A (default) - Return all relations that id is a part of.
Status Codes
* 400 — An invalid direction has been specified.
* 404 — Could not find the item identified by id.
Produces
* application/xml, application/json — ItemRelationListDocument.

* text/plain — CR LF -delimited list of Tabbed tuples of relation id, relation URI, direction
type (U, D), relation type, and source id, target id.

Role _relation_read

In addition, extra query parameters of the form key=value can be added, to only return relations that matches
the key-value pair(s).

Generate a new item relation

POST /item/ (idl)/relation/
id2 Generates a new relation between the two items with the given ids, 1d1 and id2, with the given parameters.

Query Parameters
* direction — Mandatory parameter.
— U - Set the direction of the relation as undirectional.
— S - Set the direction as id1 being the source and 1d2 being the target.

— T - Set the direction as 1d2 being the source and 1d1 being the target.

302 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Status Codes

* 400 Bad request — Both id1*‘x and ‘‘id2 identifies the same item, or the direction
is invalid.

* 404 Not found — Could not find the item identified by 1d1 or 1d2.
Produces

« application/xml, application/json — ItemRelationDocument
Role _relation_write

In addition, extra query parameters of the form key=value can be added, to set metadata of the item-to-item
relation.

Retrieve a specific item relation

GET /relation/ (relation-id)
Retrieves the relation with the id relation-id.

Status Codes

* 404 Not found — Could not find the relation identified by relation—-id.
Produces

« application/xml, application/json — ItemRelationDocument.

Role _relation_read

Update an item relation

PUT /relation/ (relation-id)
Updates the relation metadata for a relation with the id relation—-id.

Status Codes
* 404 Not found — Could not find the relation identified by relation-id.
Produces

* application/xml, application/json — The updated item described as an IltemRelationDocu-
ment.

Role _relation_write

Query parameters of the form key=value are used to modify the metadata of the relation.

Delete an item relation

DELETE /relation/ (relation-id)
Deletes the relation with the id relation—id.

Status Codes
¢ 200 OK - The item relation is deleted.
* 404 Not found — Could not find the relation identified by relation-id.

Role _relation_write

16.10. Items 303



Vidispine REST APl Documentation, Release 4.2.2

16.10.6 Item sequences
Sequence operations

List the available sequences

GET /item/ (id) /sequence
Retrieves the sequences that have been stored for a specific item.

Status Codes
* 404 Not found — Could not find the item
Produces
« application/xml, application/json — SequencelListDocument

Role _sequence_read

Create/update a sequence

PUT /item/ (id) /sequence/
format Creates or updates the sequence in the given format.

Query Parameters

* pauseFrame — When a rendering job is started, this parameter determines which frame the
job will pause at. The job will resume when the sequence is updated.

Status Codes
* 404 Not found — Could not find the item
Accepts
« application/octet-stream — The sequence definition
Produces
* application/xml, application/json — ItemDocument with the id of the sequence

Role _sequence_write

Remove a sequence

DELETE /item/ (id) /sequence/
format Removes a specific sequence from an item.

Status Codes
* 404 Not found — Could not find the item
* 404 Not found — Could not find the sequence

Role _sequence_write

304 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Rendering a sequence
A sequence can be rendered which creates a new shape that for example can be used as a preview of the sequence.
The shape tag that is provided must have a transcode preset the specifies at least:

¢ The container format.

* The audio codec and bitrate (optional for PCM.)

¢ The video codec and bitrate.

The transcoder can render a subset of the effects (both normal and key framed) and transitions that are available in
Final Cut and Avid Media Composer. They are:

¢ Effects
— Crop

Position

Scale

Rotate

Opacity
¢ Transitions
— Dissolves
+ Cross dissolve
+ Dither dissolve
+ Fade in fade out dissolve
— Wipes
* Band wipe
% Centre wipe
* Checker wipe
* Inset wipe
— Iris wipes
# Cross iris
+ Diamond iris
+ QOval iris
# Rectangle iris

* Star iris

Render a standalone sequence

POST /sequence/render
Creates a new job that renders the given sequence. A new item will be created containing a shape with the
rendered result once the job is finished.

Query Parameters

 tag — The shape tag specifying the format of the rendered sequence.

16.10. Items 305



Vidispine REST APl Documentation, Release 4.2.2

* sourceTag — The shape tag specifying the shapes to use as input.

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values
Status Codes

* 404 Not found — Could not find the item
Accepts

* application/xml, application/json — SequenceRenderRequestDocument
Produces

« application/xml, application/json — JobDocument

Role _job_write

Rendering a sequence on an item

New in version 4.1.1.

POST /item/ (id) /sequence/render
Creates a new job that renders the sequence for the given item. The item will contain a new shape with the
rendered result once the job is finished.

Example

Query Parameters
 tag — The shape tag specifying the format of the rendered sequence.
» sourceTag — The shape tag specifying the shapes to use as input.
* notification — See Notifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
* jobmetadata — Additional information for the job task. See Special job metadata values
Status Codes
* 404 Not found — Could not find the item
Produces
* application/xml, application/json — JobDocument
Role _sequence_read

Role _job_write

POST /item/VX-8/sequence/render?tag=h264

306

Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<JobDocument xmlns="http://xml.vidispine.com/schema/vidispine">

<jobId>VX-13</jobId>
<user>admin</user>

<started>2011-10-26T20:23:11.897Z</started>

<status>READY</status>

<type>CONFORM</type>

<priority>MEDIUM</priority>
</JobDocument >

16.10.7 Shapes

Item shapes

Get list of shapes

GET /item/ (id) /shape
Returns all existing shapes for a specified item.

Matrix Parameters

e version —

— essence-version-id - Return shapes for a specified version.

— all - Return shapes for all versions.

— latest (default) - Return shapes for the latest version.

Query Parameters
e url -

— true - Return list of URLSs.

— false (default) - Return list of ids.

* placeholder — New in version 4.2.3.

— true - Only return placeholder shapes.

— false (default) - Only return non-placeholder shapes.

Status Codes
* 404 Not found — Invalid id

Produces

* application/xml, application/json — URIListDocument

* text/plain — CRLF-delimited list of ids or URLs

Role _item_shape_read

Get shape

GET /item/ (id) /shape/
shape-id Returns a shape for a specified item.

Status Codes

16.10. Items

307



Vidispine REST APl Documentation, Release 4.2.2

* 404 Not found — Invalid id
Produces
« application/xml, application/json — ShapeDocument

Role _item_shape_read

Deleting a shape

DELETE /item/ (id) /shape/
shape-id Removes the specified shape. This will remove all components and and mark files for deletion, unless
files are used in other shapes.

Query Parameters
o url -
— true - Instead of shape ids, return the full paths of the shapes in the response document.
— false (default) - Only return the ids of the remaining shapes.
 keepFiles —
— true - Keep the files belong to this shape.
— false (default) - Remove the files belong to this shape.
* updateMetadata —
— true - Remove the item metadata that is generate from this shape
— false (default) - Keep the item metadata that is generate from this shape
Produces
« application/xml, application/json — URIListDocument
* text/plain — CRLF-delimited list of ids or URLs

Role _item_shape_write

Importing a new shape

New shape can be imported in one of two methods. Both methods share a lot of similarities to item imports, using a
URI or using the request body. The difference between a shape import and an essence version import is that it does
not increment the essence version nor does it perform any transcoding.

Import a shape using a URI or an existing file

POST /item/ (id) /shape
Starts a new shape import job using either a URI or a file id.

Query Parameters

* uri— A URI to the file that will be imported. See also URI’s, URL’s, and Special Characters.
Must be specified unless £ileId is specified.

* fileld — The id of the file that contains the essence. Must be specified unless uri is specified.

* tag — The tags to assign to the new shape.

308 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

* settings — Pre-configured import settings. See Import settings

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values
Produces

« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Import a shape using the request body

POST /item/ (id) /shape/raw
Starts a new shape import job using the data in the request data.

Query Parameters
* tag — The tags to assign to the new shape.

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

* transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

* settings — Pre-configured import settings. See Import settings

* notification — See Notifications . (Optional)

* notificationData — See Norifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

 jobmetadata — Additional information for the job task. See Special job metadata values
Status Codes

* 400 — If the amount of data received does not match the given Content-Length header.

New in version 4.2.3.

Accepts

« application/octet-stream — The raw essence data.
Produces

* application/xml, application/json — A JobDocument that describes the import job.

Role _import

Create a shape using shape technical information

POST /item/ (id) /shape/create
Creates a new shape using the supplied information.

Query Parameters

16.10. Items 309



Vidispine REST APl Documentation, Release 4.2.2

* tag — The tags to assign to the new shape.

* updateltemMetadata — If the shape is tagged original and this query parameter is true,
the item’s system metadata (e.g. durationSeconds) is updated.

Accepts

* application/xml, application/json — ShapeDocument
Produces

« application/xml, application/json — ShapeDocument

Role _import

Creating thumbnails and posters

Thumbnails and posters of a specific shape can be created by starting a thumbnail job.

Start a thumbnail job

New in version 4.2.3.

POST /item/ (item-id) /shape/
shape-id/thumbnail Creates a new thumbnail job with the specified parameters. Note that a job cannot
both create thumbnails at specified intervals and posters. Creating thumbnails according to transcoder rules and
creating posters is however allowed.

Query Parameters

* createThumbnails —
— true - Creates thumbnails according to default transcoder rules.
— tl, ... - Thumbnails will be created on the specified, comma-separated, Time codes.
— false (default) - No thumbnails will be created.

* createPosters — An optional list of 7ime codes to use for creating posters.

* thumbnailWidth — An optional integer specifying the width of the thumbnails.

* thumbnailHeight — An optional integer specifying the width of the thumbnails.

* thumbnailPeriod — An optional timecode string specifying the interval of the thumbnails.
It should be a decimal integer when working with multi-page images/PDFs, meaning every
N page(s).

» posterWidth — An optional integer specifying the width of the posters.
» posterHeight — An optional integer specifying the width of the posters.
* posterFormat —

— jpeqg (default) - Creates posters in JPEG format.

— png - Creates posters in PNG format.
* notification — See Noftifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values

310 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

Produces

« application/xml, application/json — JobDocument

Essence versions

New versions of essence can be imported in one of two methods. Both methods share a lot of similarities to item
imports, using a URI or using the request body.

Get all essence versions for an item

GET /item/ (id) /shape/version
Returns a list containing URLS to all essence versions of the item.

Produces

« application/xml, application/json — EssenceVersionListDocument containing information
to all essence versions of the item.

Role _item_shape_read

Import essence version using a URI or an existing file

POST /item/ (id) /shape/essence
Starts a new essence import job using either a URI or a file id.

Query Parameters

* uri— A URI to the file that will be imported. See also URI’s, URL'’s, and Special Characters.
Must be specified unless £ileId is specified.

* fileld — The id of the file that contains the essence. Must be specified unless uri is specified.

 tag — The tags to assign to the new shape.

* settings — Pre-configured import settings. See Import settings

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

» jobmetadata — Additional information for the job task. See Special job metadata values
Produces

« application/xml, application/json — A JobDocument that describes the import job.

Role _import

Import essence version using the request body

POST /item/ (id) /shape/essence/raw
Starts a new essence import job using the data in the request data.

Query Parameters

 tag — The tags to assign to the new shape.

16.10. Items 311



Vidispine REST APl Documentation, Release 4.2.2

* transferld — An id to assign the transfer to be able to refer to it. Mandatory for chunked
and passkey imports.

* transferPriority — An integer between 1 and 1000 that indicates what priority the transfer
should be given in relation to other transfers (optional). A transfer with a high priority value
is considered more important than a transfer with a low priority value.

* settings — Pre-configured import settings. See Import settings

* notification — See Notifications . (Optional)

* notificationData — See Notifications . (Optional)

* priority — The priority to assign to the job. Default is MEDIUM .

* jobmetadata — Additional information for the job task. See Special job metadata values
Status Codes

* 400 — If the amount of data received does not match the given Content-Length header.

New in version 4.2.3.

Accepts

« application/octet-stream — The raw essence data.
Produces

* application/xml, application/json — A JobDocument that describes the import job.

Role _import

Get a particular essence versions for an item

GET /item/ (id) /shape/version/
version-number Returns a list of shapes from the specified version.

Produces

« application/xml, application/json — EssenceVersionDocument containing all the shapes
with the specified version.

Role _item_shape_read

Deleting an essence version of an item

DELETE /item/ (id) /shape/version/
version Deletes all shapes associated with the specified version. Thumbnails connected to the version will also
be deleted.

Role _item_shape_write
Create/delete shapes
Create shape

POST /item/ (id) /shape

Matrix Parameters

312 Chapter 16. API Reference



Vidispine REST APl Documentation, Release 4.2.2

* version —
— essence-version-id - Version to use.
— latest (default) - Use latest version of item.
Query Parameters
* notification — See Noftifications . (Optional)
* notificationData — See Notifications . (Optional)
* priority — The priority to assign to the job. Default is MEDIUM .
* jobmetadata — Additional information for the job task. See Special job metadata values
Accepts
« application/xml, application/json — ShapeDocument
Produces
* application/xml, application/json — JobDocument
* text/plain — Job URL

Role _item_shape_write

Semantics Creates a new shape for the specified item. Actually, this function will create a new job that will
1. create a new shape
2. allocate files on adequate storages, or allocate files on storages given as input
3. create transfer/transcode jobs

Only source files from the specified version is used to create the new shape. The new shape will have the same essence
version as the original essence.

Modify shapes

PUT /item/ (id) /shape/
shape-id/placeholder

Query Parameters
* tag — Optional comma separated shape tags to be added to the shape.
* container — Optional integer, the number of container components
* audio — Optional integer, the number of audio components
* video — Optional integer, the number of video components
Accepts
« application/xml, application/json — SimpleMetadataDocument

Role _import

16.10. Items 313



Vidispine REST APl 